Introduction: Sporadic Alzheimer's disease (AD) is strongly correlated with impaired brain glucose metabolism, which may affect AD onset and progression. Ketolysis has been suggested as an alternative pathway to fuel the brain.

Methods: RNA-seq profiles of post mortem AD brains were used to determine whether dysfunctional AD brain metabolism can be determined by impairments in glycolytic and ketolytic gene expression. Data were obtained from the Knight Alzheimer's Disease Research Center (62 cases; 13 controls), Mount Sinai Brain Bank (110 cases; 44 controls), and the Mayo Clinic Brain Bank (80 cases; 76 controls), and were normalized to cell type: astrocytes, microglia, neurons, oligodendrocytes.

Results: In oligodendrocytes, both glycolytic and ketolytic pathways were significantly impaired in AD brains. Ketolytic gene expression was not significantly altered in neurons, astrocytes, and microglia.

Discussion: Oligodendrocytes may contribute to brain hypometabolism observed in AD. These results are suggestive of a potential link between hypometabolism and dysmyelination in disease physiology. Additionally, ketones may be therapeutic in AD due to their ability to fuel neurons despite impaired glycolytic metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410881PMC
http://dx.doi.org/10.1002/alz.12310DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
glycolytic ketolytic
12
ketolytic gene
12
gene expression
12
cases controls
12
brain bank
8
brain
5
disease alters
4
alters oligodendrocytic
4
glycolytic
4

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.

View Article and Find Full Text PDF

We evaluated a digital cognitive assessment platform, Philips IntelliSpace Cognition, in a case-control study of patients diagnosed with mild cognitive impairment (MCI) and cognitively normal (CN) older adults. Performance on individual neuropsychological tests, cognitive -scores, and Alzheimer's disease (AD)-specific composite scores was compared between the CN and MCI groups. These groups were matched for age, sex, and education.

View Article and Find Full Text PDF

Counteracting Alzheimer's disease normalizing neurovascular unit with a self-regulated multi-functional nano-modulator.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.

The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!