Bladder cancer (BC), a common urologic cancer, is the fifth most frequently diagnosed tumor worldwide. hsa‑miR‑34a displays antitumor activity in several types of cancer. However, the functional mechanisms underlying hsa‑miR‑34a in BC remains largely unknown. We observed that hsa‑mir‑34a levels were significantly and negatively associated with clinical disease stage as well as regional lymph node metastasis in human BC. In a series of in vitro investigations, overexpression of hsa‑miR‑34a inhibited cell migration and invasion in BC cell lines 5637 and UMUC3 as detected by Transwell assays. We further found that hsa‑miR‑34a inhibited cell migration and invasion by silencing matrix metalloproteinase‑2 (MMP‑2) expression and thus interrupting MMP‑2‑mediated cell motility. Our analysis of BC datasets from The Cancer Genome Atlas database revealed a negative correlation between hsa‑miR‑34a and MMP‑2. Moreover, higher MMP‑2 protein expression was observed in the BC tissues when compared with that noted in the normal tissue. MMP‑2 levels were also significantly associated with clinical disease stage and poor survival rate in human BC. These findings indicate that MMP‑2 plays a critical role in regulating BC progression. Therefore, hsa‑miR‑34a is a promising treatment to target MMP‑2 for the prevention and inhibition of cell migration and invasion in BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859909 | PMC |
http://dx.doi.org/10.3892/or.2020.7910 | DOI Listing |
Curr Pharm Biotechnol
January 2025
Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China.
Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.
Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.
Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.
Anticancer Agents Med Chem
January 2025
Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Unlabelled: Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis.
Objective: With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours.
Anticancer Agents Med Chem
January 2025
Department of Chemistry, Faculty of Sciences, Muğla Sıtkı Koçman University, Turkey.
Objective: Lung cancer is the primary cause of cancer-related deaths globally. Protein kinase B (AKT) protein is associated with many pathways in non-small cell lung cancer (NSCLC), such as proliferation, migration, invasion, and apoptosis. Mushrooms have a long history of being used in traditional medicine to treat various diseases.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
Adv Mater
January 2025
National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!