The aim of the present study was to explore the mechanism by which microRNA (miR)‑642a‑5p regulates the migration and invasion of colon cancer cells via collagen type I α1 (COL1A1). The characteristics of miR‑642a‑5p and COL1A1 were analysed through bioinformatics. Cancer and normal tissues were collected from patients with colon cancer. miR‑642a‑5p‑ and COL1A1‑overexpressing cell lines were constructed by transfection. A dual‑luciferase reporter assay was used to verify the targeting of COL1A1 by miR‑642a‑5p. Cell Counting Kit‑8, wound healing and Transwell assays were used to detect cell viability, migration and invasion, respectively. Protein and mRNA expression levels were examined by western blotting and reverse transcription‑quantitative PCR, respectively. The results revealed that miR‑642a‑5p expression was significantly upregulated and COL1A1 expression was downregulated in patients with colon cancer. Low levels of miR‑642a‑5p and high levels of COL1A1 were associated with a poor prognosis in patients with colon cancer. miR‑642a‑5p directly targeted the 3'‑untranslated region of COL1A1 and inhibited COL1A1 expression. Overexpression of miR‑642a‑5p inhibited cell viability, migration, invasion and epithelial mesenchymal transition. Overexpression of COL1A1 promoted cell viability, migration, invasion and EMT, and partially reversed the inhibitory effects of miR‑642a‑5p on colon cancer cells. In conclusion, miR‑642a‑5p inhibited colon cancer cell migration, invasion and EMT by regulating COL1A1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859924 | PMC |
http://dx.doi.org/10.3892/or.2020.7905 | DOI Listing |
Anim Cells Syst (Seoul)
January 2025
Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.
Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh.
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, 1120 NW 14th St #2107, 15th Floor, Miami, FL, USA.
Discov Oncol
January 2025
Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
Colon cancer remains a significant health burden globally, necessitating deeper investigation. Identification and targeting of prognostic markers can significantly improve the current therapeutic approaches for colon cancer. The differential nuclear transport (import and export) of cellular proteins, plays an important role in tumor progression.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam.
The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!