The initial stages of the nitrate radical (NO3) initiated oxidation of isoprene, in particular the fate of the peroxy (RO2) and alkoxy (RO) radicals, are examined by an extensive set of quantum chemical and theoretical kinetic calculations. It is shown that the oxidation mechanism is highly complex, and bears similarities to its OH-initiated oxidation mechanism as studied intensively over the last decade. The nascent nitrated RO2 radicals can interconvert by successive O2 addition/elimination reactions, and potentially have access to a wide range of unimolecular reactions with rate coefficients as high as 35 s-1; the contribution of this chemistry could not be ascertained experimentally. The chemistry of the alkoxy radicals derived from these peroxy radicals is affected by the nitrate moiety, and can lead to the formation of nitrated epoxy peroxy radicals in competition with isomerisation and decomposition channels that terminate the organic radical chain by NO2 elimination. The theoretical predictions are implemented in the FZJ-NO3-isoprene mechanism for NO3-initiated atmospheric oxidation of isoprene. The model predictions are compared against peroxy radical (RO2) and methyl vinyl ketone (MVK) measurements in a set of experiments on the isoprene + NO3 reaction system performed in the SAPHIR environmental chamber (IsopNO3 campaign). It is shown that the formation of NO2 from the peroxy radicals can prevent a large fraction of the peroxy radicals from being measured by the laser-induced fluorescence (ROxLIF) technique that relies on a quantitative conversion of peroxy radicals to hydroxyl radicals. Accounting for the relative conversion efficiency of RO2 species in the experiments, the agreement between observations and the theory-based FZJ-NO3-isoprene model predictions improves significantly. In addition, MVK formation in the NO3-initiated oxidation was found to be suppressed by the epoxidation of the unsaturated RO radical intermediates, allowing the model-predicted MVK concentrations to be in good agreement with the measurements. The FZJ-NO3-isoprene mechanism is compared against the MCM v3.3.1 and Wennberg et al. (2018) mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp06267g | DOI Listing |
Sci Rep
January 2025
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Physics, Bharathiar University, Coimbatore 641046, India.
The hydrogen shift reactions of peroxy radicals derived from the ȮH-initiated oxidation of three atmospherically important monoterpenes, limonene, α-pinene, and β-pinene, have been studied. The Bell-Evans-Polanyi relationship (BEPR), Marcus cross relationship (MCR), and Robert-Steel relationship (RSR) are employed to study the factors that contribute to the kinetics of the H-shift reactions. Our results show distinct kinetic behaviors based on the size of the transition-state ring, the functional group present at the H atom abstraction site, and the type of carbon-centered radical formed.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
PIMM, Arts et Metiers Institute of Technology, CNRS, CNAM, HESAM University, Paris 75013, France.
Phenolic antioxidants are widely used to prevent oxidation, which is the main degradation process for many polymers, in particular polyolefins among which polyethylene is the most employed one. Although it is generally understood that one of the main mechanisms by which phenolic antioxidants prevent or slow down oxidation is by deactivating radicals and preventing the formation of alkyl radicals, detailed understanding at the atomic scale of the hierarchy of radical reactions is still lacking. Here, we investigate the interaction of a prototypical phenolic antioxidant, butylated hydroxytoluene (BHT), with radicals in a polyethylene model by means of static and dynamic simulations based on density functional theory.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Monoterpenes, the second most abundant biogenic volatile organic compounds globally, are crucial in forming secondary organic aerosols, making their oxidation mechanisms vital for addressing climate change and air pollution. This study utilized cyclohexene as a surrogate to explore first-generation products from its ozonolysis through laboratory experiments and mechanistic modeling. We employed proton transfer reaction mass spectrometry with NH ion sources (NH-CIMS) and a custom-built OH calibration source to quantify organic peroxy radicals (RO) and closed-shell species.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
Department of Chemistry, KU Leuven, Celestijnenlaan, 200F, Leuven 3001, Belgium.
In this study, we revisited the mechanism of isoprene oxidation by OH radicals, focusing on the formation of hydroperoxyaldehydes (HPALDs) in the reactions following O-addition at the α-position to ,'-OH-allyl radical products of the 1,6-H shift of the 1st-generation -δ-OH-isoprenylperoxy radicals. Utilizing high-level quantum chemical calculations and a master equation approach, we provide theoretical confirmation that the formation of δ-HPALDs dominates by far and show that production of β-HPALDs by the mechanism proposed by Wennberg (, 2018, , 3337-3390) is negligible. Besides the dominance of the δ-HPALD formation channel, our investigation also reveals a novel though minor reaction channel resulting in the formation of an allylic δ-hydroperoxy acid and OH radical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!