Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Compton scattering is generally neglected in diffraction experiments because the incoherent radiation it generates does not give rise to interference effects and therefore is negligible at Bragg peaks. However, as the scattering volume is reduced, the difference between the Rayleigh (coherent) and Compton (incoherent) contributions at Bragg peaks diminishes and the incoherent part may become substantial. The consequences can be significant for coherent diffraction imaging at high scattering angles: the incoherent radiation produces background that smears out the secondary interference fringes, affecting thus the achievable resolution of the technique. Here, a criterion that relates the object shape and the resolution is introduced. The Compton contribution for several object shapes is quantified, and it is shown that the maximum achievable resolution along different directions has a strong dependence on the crystal shape and size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941292 | PMC |
http://dx.doi.org/10.1107/S1600577521000722 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!