We measured the morphology traits (specific root length, specific root surface area, root tissue density, average root diameter) and architecture traits (root fork, root fork ratio, increase rate of root length, root tip density, root fork density) of fine roots in two mycorrhiza tree species, (ectomycorrhizal) and (arbuscular mycorrhizal), in an evergreen broadleaved forest in the middle subtropical zone. Root bags method was used in an nitrogen deposition experiment. The aim of this study was to reveal the differences in the plastic responses of fine root morphology and architecture traits to nitrogen deposition between the different mycorrhizal trees. The plastic responses of specific root length, specific root surface area and root fork to nitrogen addition decreased from the first-order root to the fourth-order root, while root tissue density showed an opposite pattern. Such a result indicated a trade-off between nutrient acquisition and resource maintenance of different fine root orders. Different mycorrhizal tree species adopted diffe-rent adaptation strategies to the variations of soil nitrogen availability. adopted an opportuni-stic strategy, which relied on fine root to improve nutrient absorption efficiency, enhanced the capacity of space expansion and nutrient absorption to focus on rapid nutrient absorption strategy. did not change fine root morphological traits through the trade-off between nutrient absorption efficiency and root construction cost, but relied more on the complementarity between mycorrhizal fungi and fine root architecture traits for nutrient acquisition. The differences in the cost of maintaining and constructing fine root C between different mycorrhizal trees led to fine root adopting the most suitable nutrient capture strategy.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202102.025DOI Listing

Publication Analysis

Top Keywords

fine root
32
root
25
architecture traits
16
specific root
16
root fork
16
nutrient absorption
16
plastic responses
12
tree species
12
root length
12
fine
9

Similar Publications

The existence of trait coordination in roots and leaves has recently been debated, with studies reaching opposing conclusions. Here, we assessed trait coordination across twelve boreal tree species. We show that there is only partial evidence for above-belowground coordination for "fast-slow" economic traits across boreal tree species, i.

View Article and Find Full Text PDF

Root and mycorrhizal nutrient acquisition strategies in the succession of subtropical forests under N and P limitation.

BMC Plant Biol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.

Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.

View Article and Find Full Text PDF

The present research incorporates five AI methods to enhance and forecast the characteristics of building envelopes. In this study, Response Surface Methodology (RSM), Support Vector Machine (SVM), Gradient Boosting (GB), Artificial Neural Networks (ANN), and Random Forest (RF) machine learning method for optimization and predicting the mechanical properties of natural fiber addition incorporated with construction and demolition waste (CDW) as replacement of Fine Aggregate in Paver blocks. In this study, factors considered were cement content, natural fine aggregate, CDW, and coconut fibre, while the resulting measure was the machinal properties of the paver blocks.

View Article and Find Full Text PDF

Background: This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation.

View Article and Find Full Text PDF

Understanding and regulating global carbon relies crucially on comprehending the components and services of forest ecosystems. In particular, interactions that govern carbon storage in trees, soil, and microbes, driven by factors like vegetation structure, function, and soil characteristics, remain poorly understood, especially in the central Himalayas. To address this gap, we investigated carbon storage in tree aboveground biomass, root biomass, and soil across different vegetation types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!