Background: Oxidative stress refers to the accumulation of reactive oxygen species (ROS). Most assays for ROS detection are costly, laborious, and usually use indirect markers. The use of 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) is a possible alternative. This substance becomes a fluorochrome when oxidized by ROS, with the resultant fluorescence proportional to ROS concentration. Erythrocytes are highly exposed to ROS, resulting in cell damage and consequently impaired oxygen delivery. The effects of this exposure in physiologic and pathologic conditions necessitate an improvement in ROS detection methods.

Objective: We aimed to validate intraerythrocytic ROS detection by flow cytometry using DCHF-DA in healthy horses.

Methods: Erythrocytes from 31 healthy horses were isolated, incubated with DCFH-DA, and either left unstimulated or stimulated with hydrogen peroxide (H O ). For specificity, each cellular component of blood was separated and plotted according to its size and complexity. Samples were run in triplicate for intra-assay precision and five consecutive times for inter-assay repeatability. Stability was determined by analyzing the same sample up to 48 hours after blood collection. The acceptable coefficient of variation (CV) was ≤20%.

Results: The intra-assay CV was 1.7% and 13.3%, and the inter-assay CV was 4.8% and 17.8% for unstimulated and stimulated samples, respectively. Unstimulated and stimulated samples were stable for up to 48 and 24 hours, respectively. Stimulated samples had greater fluorescence than unstimulated samples (P < .0001).

Conclusions: This flow cytometric assay demonstrated adequate specificity, precision, and stability and is, therefore, a promising technique with multiple applications for studying oxidative stress in horses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/vcp.12976DOI Listing

Publication Analysis

Top Keywords

ros detection
12
unstimulated stimulated
12
stimulated samples
12
reactive oxygen
8
oxygen species
8
ros
7
samples
5
validation flow
4
flow cytometric
4
cytometric assay
4

Similar Publications

[The impact of mitochondrial transfer on leukemia progression].

Sheng Li Xue Bao

December 2024

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.

The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2 cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry.

View Article and Find Full Text PDF

SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1.

J Cardiothorac Surg

January 2025

Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.

Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.

Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells.

View Article and Find Full Text PDF

Fates of bioactive compounds and antioxidant activities of red pitaya pulp upon in vitro gastrointestinal digestion.

Food Res Int

January 2025

Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangdong 510610, China. Electronic address:

Health benefit effects of bioactive compounds depend on their bioavailabilities, which could vary according to factors including food matrix and digestion environment. To understand the "bioaccessible" health benefit of red pitay pulp, the INFOGEST static in vitro simulation of gastrointestinal (GI) digestion model and targeted metabolomics method were applied to unravel the fates of bioactive compounds in the whole food of red pitaya pulp during GI digestion. The antioxidant activity as one of the health benefit indices was also assessed to compare the changes in bioactive properties of red pitaya pulp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!