Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aimed to determine the effect of initial pH and temperature on whey protein gel formation via the Maillard reaction, including changes in gel structure, rheological and texture properties. The color changes in the whey protein and glucose gels were not significant with increasing heat temperature. High temperature and alkaline conditions promoted exposure to hydrophobic groups such as -SH, which accelerated protein aggregation and gel formation. Moreover, the increased particle size and additional hydrophobic groups contributed to higher elastic modulus (G') in the whey protein gel. Fluorescence measurements revealed that more tryptophan on the protein surface decreased with increasing temperature, which indicated that exposure to tryptophan could increase the hydrophobicity of the protein gels. Whey proteins formed stronger, gummier, more elastic, and more cohesive gels at 70 ℃ under initial pH 9 conditions, which also increased with the addition of fructose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.15659 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!