This study was designed to evaluate whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can directly target the central nervous system (CNS). We present four patients suffering from the loss of consciousness and seizure during the clinical course of COVID-19 infection. In addition to positive nasopharyngeal swab tests, SARS-CoV-2 has been detected in their cerebrospinal fluid. This report indicates the neuroinvasive potential of SARS-CoV-2, suggesting the ability of this virus to spread from the respiratory tract to the CNS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920401 | PMC |
http://dx.doi.org/10.1007/s13365-020-00938-w | DOI Listing |
Clin Oncol (R Coll Radiol)
January 2025
RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
PLoS One
January 2025
Division of Neurosurgery, Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
Introduction: Given its proximity to the central nervous system, surgical site infections (SSIs) after craniotomy (SSI-CRAN) represent a serious adverse event. SSI-CRAN are associated with substantial patient morbidity and mortality. Despite the recognition of SSI in other surgical fields, there is a paucity of evidence in the neurosurgical literature devoted to skin closure, specifically in patients with brain tumors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.
View Article and Find Full Text PDFElife
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult CNS and 1373 lines characterized in third-instar larvae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!