Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068737 | PMC |
http://dx.doi.org/10.1007/s13280-021-01512-2 | DOI Listing |
Photosynthetica
January 2025
University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France.
High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens.
View Article and Find Full Text PDFBJA Open
March 2025
Department of Anaesthesia, The William Harvey Hospital, Ashford, UK.
Background: Increasing awareness of the potential environmental impact of volatile anaesthetic agents has stimulated increased use of total i.v. anaesthesia.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.
View Article and Find Full Text PDFNat Genet
January 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.
Rice production is facing substantial threats from global warming associated with extreme temperatures. Here we report that modifying a heat stress-induced negative regulator, a negative regulator of thermotolerance 1 (NAT1), increases wax deposition and enhances thermotolerance in rice. We demonstrated that the C2H2 family transcription factor NAT1 directly inhibits bHLH110 expression, and bHLH110 directly promotes the expression of wax biosynthetic genes CER1/CER1L under heat stress conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, 94923, USA.
Marine foundation species are increasingly impacted by anthropogenic stressors, driving a loss of diversity within these critical habitats. Prior studies suggest that species diversity within mussel beds has declined precipitously in southern California, USA, but it is unclear whether a similar loss has occurred farther north. Here, we resurvey a mussel bed community in northern California first sampled in 1941 to evaluate changes in diversity after 78 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!