Fluorouracil (5FU) is converted to its active metabolite fluoro‑deoxyuridine monophosphate (FdUMP) through the orotate phosphoribosyl transferase (OPRT)‑ribonucleotide reductase (RR) pathway and thymidine phosphatase (TP)‑thymidine kinase (TK) pathway and inhibits thymidylate synthase (TS), leading to inhibition of thymidine monophosphate (dTMP) synthesis through a pathway. We investigated the mechanism of 5FU resistance and strategies to overcome it by focusing on 5FU metabolism. Colon cancer cell lines SW48 and LS174T and 5FU‑resistant cell lines SW48/5FUR and LS174T/5FUR were used. FdUMP amount was measured by western blotting. The FdUMP synthetic pathway was investigated by combining TP inhibitor (tipiracil hydrochloride; TPI) or RR inhibitor (hydroxyurea; HU) with 5FU. Drug cytotoxicity was observed by crystal violet staining assay. FdUMP was synthesized through the OPRT‑RR pathway in SW48 cells but was scarcely synthesized through either the OPRT‑RR or TP‑TK pathway in SW48/5FUR cells. FdUMP amount in SW48/5FUR cells was reduced by 87% vs. SW48 cells. Expression levels of OPRT and TP were lower in SW48/5FUR when compared with these levels in the SW48 cells, indicating decreased synthesis of FdUMP‑led 5FU resistance. These results indicated that fluoro‑deoxyuridine (FdU) rather than 5FU promotes FdUMP synthesis and overcomes 5FU resistance. Contrastingly, FdUMP was synthesized through the OPRT‑RR and TP‑TK pathways in LS174T cells but mainly through the TP‑TK pathway in LS174T/5FUR cells. FdUMP amount was similar in LS174T/5FUR vs. the LS174T cells. OPRT and RR expression was lower and TK expression was higher in LS174T/5FUR vs. the LS174T cells, indicating that dTMP synthesis increased through the salvage pathway, thus leading to 5FU resistance. LS174T/5FUR cells also showed cross‑resistance to FdU and TS inhibitor, suggesting that nucleoside analogs such as trifluoro‑thymidine should be used to overcome 5FU resistance in these cells. 5FU metabolism and mechanisms of 5FU resistance are different in each cell line. Both synthesized FdUMP amount and FdUMP sensitivity should be considered in 5FU‑resistant cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905524PMC
http://dx.doi.org/10.3892/or.2021.7978DOI Listing

Publication Analysis

Top Keywords

5fu resistance
32
fdump amount
16
5fu
14
5fu metabolism
12
cell lines
12
synthesized oprt‑rr
12
cells
12
ls174t cells
12
fdump
10
resistance
8

Similar Publications

Salidroside enhances 5-fluorouracil sensitivity against hepatocellular carcinoma via YIPF5-induced mitophagy.

Front Pharmacol

January 2025

College of Life Sciences, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, Nanjing Normal University, Nanjing, China.

Hepatocellular carcinoma (HCC) is a major medical challenge due to its high incidence and poor prognosis. 5-Fluorouracil (5-FU), although extensively studied in the treatment of HCC and other solid tumors, has limited application as a first-line therapy for HCC due to its resistance and significant inter-patient variability. To address these issues, researchers have explored drug repurposing.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Activation of sphingosine-1-phosphate receptor 2 (S1PR2) upregulates dihydropyrimidine dehydrogenase (DPD) expression in colon cancer cells.

J Adv Res

January 2025

Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China. Electronic address:

Introduction: Dihydropyrimidine dehydrogenase (DPD) is a major determinant of cancer 5-fluorouracyl (5-FU) resistance via its direct degradation. However, the mechanisms of tumoral DPD upregulation have not been fully understood.

Objectives: This study aimed to explore the role of S1PR2 in the regulation of tumoral DPD expression, identifying S1PR2 as the potential target for reversing 5-FU resistance.

View Article and Find Full Text PDF

5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.

View Article and Find Full Text PDF

MRPL24 drives breast cancer metastasis and stemness by targeting c-MYC, BRD4, and STAT3.

3 Biotech

February 2025

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093 China.

Unlabelled: The study aims to investigate the clinicopathological significance of MRPL24 in human cancers, with a particular focus on breast cancer (BC). Comprehensive bioinformatics analyses were conducted using data from The Cancer Genome Atlas (TCGA) and various advanced database, including cBioPortal, UALCAN, TIMER, Prognoscan, TISIDB, KM Plotter, and The Human Protein Atlas, to provide a detailed evaluation of MRPL55's role in cancer. The findings were further validated through experimental studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!