The precise mechanism of intercellular communication between cancer cells following radiation exposure is unclear. Exosomes are membrane‑enclosed small vesicles comprising lipid bilayers and are mediators of intercellular communication that transport a variety of intracellular components, including microRNAs (miRNAs or miRs). The present study aimed to identify novel roles of exosomes released from irradiated cells to neighboring cancer cells. In order to confirm the presence of exosomes in the human pancreatic cancer cell line MIAPaCa‑2, ultracentrifugation was performed followed by transmission electron microscopy and nanoparticle tracking analysis (NanoSight) using the exosome‑specific surface markers CD9 and CD63. Subsequent endocytosis of exosomes was confirmed by fluorescent microscopy. Cell survival following irradiation and the addition of exosomes was evaluated by colony forming assay. Expression levels of miRNAs in exosomes were then quantified by microarray analysis, while protein expression levels of Cu/Zn‑ and Mn‑superoxide dismutase (SOD1 and 2, respectively) enzymes in MIAPaCa‑2 cells were evaluated by western blotting. Results showed that the uptake of irradiated exosomes was significantly higher than that of non‑irradiated exosomes. Notably, irradiated exosomes induced higher intracellular levels of reactive oxygen species (ROS) and a higher frequency of DNA damage in MIAPaCa‑2 cells, as determined by fluorescent microscopy and immunocytochemistry, respectively. Moreover, six up‑ and five downregulated miRNAs were identified in 5 and 8 Gy‑irradiated cells using miRNA microarray analyses. Further analysis using miRNA mimics and reverse transcription‑quantitative PCR identified miR‑6823‑5p as a potential candidate to inhibit SOD1, leading to increased intracellular ROS levels and DNA damage. To the best of our knowledge, the present study is the first to demonstrate that irradiated exosomes enhance the radiation effect via increasing intracellular ROS levels in cancer cells. This contributes to improved understanding of the bystander effect of neighboring cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7877005 | PMC |
http://dx.doi.org/10.3892/or.2021.7964 | DOI Listing |
Lasers Med Sci
January 2025
Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).
View Article and Find Full Text PDFGeroscience
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness.
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Background: Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!