Venetoclax is a highly potent, selective BCL2 inhibitor capable of inducing apoptosis in cells dependent on BCL2 for survival. Most myeloma is MCL1-dependent; however, a subset of myeloma enriched for translocation t(11;14) is codependent on BCL2 and thus sensitive to venetoclax. The biology underlying this heterogeneity remains poorly understood. We show that knockdown of cyclin D1 does not induce resistance to venetoclax, arguing against a direct role for cyclin D1 in venetoclax sensitivity. To identify other factors contributing to venetoclax response, we studied a panel of 31 myeloma cell lines and 25 patient samples tested for venetoclax sensitivity. In cell lines, we corroborated our previous observation that BIM binding to BCL2 correlates with venetoclax response and further showed that knockout of BIM results in decreased venetoclax sensitivity. RNA-sequencing analysis identified expression of B-cell genes as enriched in venetoclax-sensitive myeloma, although no single gene consistently delineated sensitive and resistant cells. However, a panel of cell surface makers correlated well with ex vivo prediction of venetoclax response in 21 patient samples and may serve as a biomarker independent of t(11;14). Assay for transposase-accessible chromatin sequencing of myeloma cell lines also identified an epigenetic program in venetoclax-sensitive cells that was more similar to B cells than that of venetoclax-resistant cells, as well as enrichment for basic leucine zipper domain-binding motifs such as BATF. Together, these data indicate that remnants of B-cell biology are associated with BCL2 dependency and point to novel biomarkers of venetoclax-sensitive myeloma independent of t(11;14).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8462405PMC
http://dx.doi.org/10.1182/blood.2020007899DOI Listing

Publication Analysis

Top Keywords

venetoclax sensitivity
16
venetoclax response
12
cell lines
12
venetoclax
10
myeloma cell
8
patient samples
8
venetoclax-sensitive myeloma
8
independent t1114
8
myeloma
7
bcl2
5

Similar Publications

Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins.

View Article and Find Full Text PDF

We previously demonstrated that reduced intrinsic electron transport chain (ETC) activity predicts and promotes sensitivity to the BCL-2 antagonist, venetoclax (Ven) in multiple myeloma (MM). Heme, an iron-containing prosthetic group, and metabolite is fundamental to maintaining ETC activity. Interrogation of the CD2 subgroup of MM from the CoMMpass trial (NCT01454297), which can be used as a proxy for Ven-sensitive MM (VS MM), shows reduced expression of the conserved heme biosynthesis pathway gene signature.

View Article and Find Full Text PDF

Antiapoptotic Bcl-2 family proteins are involved in myeloma cell survival. To date, their expression in multiple myeloma (MM) patients has mostly been analyzed at the RNA level. In the present study, we quantified for the first time the protein expression of the Bcl2-family members using a capillary electrophoresis immunoassay in 120 newly diagnosed MM patients, aged ≤65 years, treated in the context of the PETHEMA/GEM2012 study.

View Article and Find Full Text PDF

Unlabelled: In Diffuse Large B-cell Lymphoma (DLBCL), elevated anti-apoptotic BCL2-family proteins (e.g., MCL1, BCL2, BCLXL) and NF-κB subunits (RelA, RelB, cRel) confer poor prognosis.

View Article and Find Full Text PDF

The combination of venetoclax plus azacitidine (VTX-AZA) is FDA-approved to treat patients with acute myeloid leukemia (AML) aged ≥75 years and has become the standard of care for AML patients. However, the literature has not reported an analytical method for determining VTX-AZA in plasma samples. Therefore, developing an accurate and sensitive bioanalytical assay to quantify VTX-AZA in plasma is important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!