Topographical abnormality in corneal tissue is a common diagnostic marker for many eye diseases and injuries. Using an asynchronous optical sampling terahertz time-domain spectroscopy setup, we developed a non-contact and normal-incidence imaging system to measure topographic changes along the surface of spherical samples. We obtained orthogonal 1D scans of calibration spheres to evaluate the minimum axial resolution of our system. We determined the axial and spatial resolution of the scanner using 3D-printed spherical cross and Boehler star targets. Furthermore, we characterized the asymmetrical performance of the scanner due to the use of an off-axis parabolic mirror. Finally, we developed an edge-detection filter to aid with improving the topographic scans. We showed that when imaging samples were comparable in size to the human cornea, the axial and spherical spatial resolutions were limited to about 15 µm (∼/67) and 1 mm, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760507 | PMC |
http://dx.doi.org/10.1364/OL.419140 | DOI Listing |
As a noninvasive optical method, terahertz time-domain spectroscopy (THz-TDS) has been applied to diagnose the plasma parameters. Previous reports mainly focused on the phase and amplitude changes of THz waves induced by the plasma, while the terahertz polarization characteristics were rarely reported. In this paper, in addition to the plasma electron density and terahertz transmittance, we further applied the terahertz time-domain polarimetry (THz-TDP) method to diagnose the terahertz polarization rotation angles induced by an argon inductively coupled plasma (ICP).
View Article and Find Full Text PDFWe provide the first direct experimental evidence for the reorientation of liquid crystals by polarized radiation from a conventional, low power, oscillator-based terahertz time-domain spectrometer. Using a terahertz pump - optical probe setup, we observed that the reorientation occurs locally through the resonant amplification of the terahertz field in a specially designed planar metamaterial, adjacent to the liquid crystal layer, and increases with increasing incident terahertz intensity. Our work thus demonstrates that it is possible to induce strong optical nonlinearity in liquid crystals in the terahertz part of the spectrum, paving the way toward the development of new all-optical active terahertz devices as well as electric field sensors for localized resonant systems.
View Article and Find Full Text PDFOpt Express
December 2024
In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Terahertz radiation patterns can be registered using various detectors; however, in most cases, the scanning resolution is limited. Thus, we propose an alternative method for the detailed scanning of terahertz light field distributions after passing simple and complex structures. Our method relies on using a dielectric waveguide to achieve better sampling resolution.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China.
The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) has been operated as a user facility for over five years. To further meet the growing demands of modern science, an upgrade project for an infrared-terahertz free electron laser facility based on CTFEL has been proposed to broaden the frequency range from 0.1-4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!