Surface enhanced Raman spectroscopy (SERS) and stimulated Raman spectroscopy (SRS) are well established techniques capable of boosting the strength of Raman scattering. The combination of both techniques (surface enhanced stimulated Raman spectroscopy, or SE-SRS) has been reported using plasmonic nanoparticles. In parallel, waveguide enhanced Raman spectroscopy has been developed using nanophotonic and nanoplasmonic waveguides. Here, we explore SE-SRS in nanoplasmonic waveguides. We demonstrate that a combined photothermal and thermo-optic effect in the gold material induces a strong background signal that limits the detection limit for the analyte. The experimental results are in line with theoretical estimates. We propose several methods to reduce or counteract this background.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.418527 | DOI Listing |
Nano Lett
January 2025
Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.
View Article and Find Full Text PDFNano Lett
January 2025
Institut für Festkörperelektronik, Technische Universität Wien, Gußhausstraße 25, 1040 Vienna, Austria.
We synthesized and spectroscopically investigated monolayer (ML) C on the topological insulator (TI) BiTe. This C/BiTe heterostructure is characterized by an excellent translational order in a novel (4 × 4) C superstructure on a (9 × 9) cell of BiTe. Angle-resolved photoemission spectroscopy (ARPES) of C/BiTe reveals that ML C accepts electrons from the TI at room temperature, but no charge transfer occurs at low temperatures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.
View Article and Find Full Text PDFTaiwan J Ophthalmol
December 2024
Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.
The aim of this study is to describe genotype and phenotype of patients with bestrophinopathy. The case records were reviewed retrospectively, findings of multimodal imaging such as color fundus photograph, optical coherence tomography (OCT), fundus autofluorescence, electrophysiological, and genetic tests were noted. Twelve eyes of six patients from distinct Indian families with molecular diagnosis were enrolled.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Rice University Houston Texas 77005 USA
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!