An all-fiber orbital angular momentum (OAM) mode generator enabling simultaneous generation of the second- and the third-order OAM modes with conversion efficiencies larger than 95% has been proposed and experimentally demonstrated, which is realized by using a high-order helical long-period fiber grating (HLPG) written in a thinned four-mode fiber. This is the first time, to the best of our knowledge, that two such OAM modes have been simultaneously obtained at wavelengths ranging from 1450 to 1620 nm by using only one fiber component, i.e., the HLPG. The proposed method provides a new way to simultaneously generate different orders of the OAM modes, which would further expand the OAM's applications to the fields of the optical tweezers, microscopy, and fiber communication, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.418248 | DOI Listing |
ACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFNanophotonics
November 2024
Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
Singularity in a two-point complex coherence function, known as coherence vortices, represents zero visibility with a helical phase structure. In this paper, we introduce a novel technique to generate the coherence vortices of different topological charges by incoherent source transmittance with exotic structured binary pinholes. The binary pinhole structures have been realized by lithography, followed by wet etching methods.
View Article and Find Full Text PDFThe orbital angular momentum (OAM) of beams provides an additional degree of freedom and has been applied in various scientific and technological fields. Accurate and quantitative measurement of intensity distributions across different OAM modes, referred to as the OAM spectrum of a beam, is crucial. Here, we propose a straightforward and efficient experimental setup for measuring the OAM spectrum of a randomly fluctuating beam.
View Article and Find Full Text PDFNanophotonics
July 2024
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
We propose and demonstrate the simulation and fabrication of an all-fiber orbital angular momentum (OAM) mode converter capable of generating first- to fourth-order modes simultaneously, which is realized by inscribing a cascaded preset-twist long-period fiber grating (CPT-LPFG) in a six-mode fiber utilizing a CO laser. A new segmented Runge-Kutta method is proposed to simulate the preset-twist long-period fiber gratings. By calculating the twist angle and relative coupling coefficient for each pitch and then solving the coupled mode equations utilizing the Runge-Kutta algorithm.
View Article and Find Full Text PDFSci Rep
December 2024
School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!