A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics.

Sci Rep

Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.

Published: March 2021

Microfluidic devices have been used progressively in biomedical research due to the advantages they offer, such as relatively low-cost, rapid and precise processing, and an ability to support highly automated analyses. Polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA) are both biocompatible materials widely used in microfluidics due to their desirable characteristics. It is recognized that combining these two particular materials in a single microfluidic device would enable the development of an increasingly in-demand array of new applications, including those requiring high flow rates and elevated pressures. Whereas complicated and time-consuming efforts have been reported for bonding these two materials, the robust adhesion of PDMS and PMMA has not yet been accomplished, and remains a challenge. In this study, a new, simple, efficient, and low-cost method has been developed to mediate a strong bond between PMMA and PDMS layers at room temperature in less than 5 min using biocompatible adhesive tape and oxygen plasma treatment. The PDMS-PMMA bond was hydrolytically stable, and could tolerate a high influx of fluid without any leakage. This study addresses the limitations of existing approaches to bond these materials, and will enable the development of highly sought high-pressure and high-throughput biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921553PMC
http://dx.doi.org/10.1038/s41598-021-83011-8DOI Listing

Publication Analysis

Top Keywords

room temperature
8
enable development
8
simple low-cost
4
low-cost approach
4
approach irreversible
4
irreversible bonding
4
bonding polymethylmethacrylate
4
polymethylmethacrylate polydimethylsiloxane
4
polydimethylsiloxane room
4
temperature high-pressure
4

Similar Publications

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

The development of stable biopharmaceutical formulations, such as monoclonal antibodies, poses a great challenge in the pharmaceutical industry. This study investigated the stabilizing effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in liquid and solid formulations of infliximab during processing and storage. The solid formulation was produced by a scaled-up high-speed electrospinning method, resulting in a product suitable for reconstitution with excellent dissolution properties.

View Article and Find Full Text PDF

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

Survival of viruses in water microcosms.

Sci Total Environ

January 2025

Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:

Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.

View Article and Find Full Text PDF

Objective: Laparoscopic cholecystectomy is a common procedure for gallbladder diseases, but many patients experience shoulder pain due to pneumoperitoneum. This study investigates the comparative effectiveness of warm carbon dioxide gas insufflation versus local heat application in reducing shoulder pain after laparoscopic cholecystectomy. We also examined changes in body temperature during surgery and postoperative shivering in the intervention and control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!