Sexual selection drives rapid phenotypic diversification of mating traits. However, we know little about the causative genes underlying divergence in sexually selected traits. Here, we investigate the genetic basis of male mating trait diversification in the medaka fishes (genus Oryzias) from Sulawesi, Indonesia. Using linkage mapping, transcriptome analysis, and genome editing, we identify csf1 as a causative gene for red pectoral fins that are unique to male Oryzias woworae. A cis-regulatory mutation enables androgen-induced expression of csf1 in male fins. csf1-knockout males have reduced red coloration and require longer for mating, suggesting that coloration can contribute to male reproductive success. Contrary to expectations, non-red males are more attractive to a predatory fish than are red males. Our results demonstrate that integrating genomics with genome editing enables us to identify causative genes underlying sexually selected traits and provides a new avenue for testing theories of sexual selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921647PMC
http://dx.doi.org/10.1038/s41467-021-21697-0DOI Listing

Publication Analysis

Top Keywords

genome editing
12
sexual selection
8
causative genes
8
genes underlying
8
sexually selected
8
selected traits
8
editing reveals
4
reveals fitness
4
fitness effects
4
effects gene
4

Similar Publications

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.

View Article and Find Full Text PDF

Here we analyzed the relative contributions of CD4 regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8 regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4 and CD8 regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes.

View Article and Find Full Text PDF

Precise deletion, replacement and inversion of large DNA fragments in plants using dual prime editing.

Nat Plants

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.

Precise manipulation of genome structural variations holds great potential for plant trait improvement and biological research. Here we present a genome-editing approach, dual prime editing (DualPE), that efficiently facilitates precise deletion, replacement and inversion of large DNA fragments in plants. In our experiments, DualPE enabled the production of specific genomic deletions ranging from ~500 bp to 2 Mb in wheat protoplasts and plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!