AI Article Synopsis

  • Several studies identified new SARS-CoV-2 lineages that show unique genetic features and evolutionary differences.
  • These findings highlight the ongoing mutation and adaptation of the virus.
  • Understanding these new lineages is crucial for public health responses and vaccine development.

Article Abstract

Almost simultaneously, several studies reported the emergence of novel SARS-CoV-2 lineages characterized by their phylogenetic and genetic distinction (1), (2), (3), (4).….

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139668PMC
http://dx.doi.org/10.1128/JVI.00119-21DOI Listing

Publication Analysis

Top Keywords

novel sars-cov-2
8
genomic characterization
4
characterization novel
4
sars-cov-2 lineage
4
lineage rio
4
rio janeiro
4
janeiro brazil
4
brazil simultaneously
4
simultaneously studies
4
studies reported
4

Similar Publications

Background: Post-acute coronavirus disease 2019 (COVID-19) syndrome (PACS) is the persistence of sequel of acute SARS-COV-2 infection. Persistent/acquired gastrointestinal symptoms (GI-PACS) include loss of appetite, nausea, weight loss, abdominal pain, heartburn, dysphagia, altered bowel motility, dyspepsia, and irritable bowel syndrome. The study aimed to assess the short- and long-term GI-PACS syndrome on the GSRS scale.

View Article and Find Full Text PDF

BackgroundEarly detection and characterisation of SARS-CoV-2 variants have been and continue to be essential for assessing their public health impact. In August 2023, Santé publique France implemented enhanced surveillance for BA.2.

View Article and Find Full Text PDF

A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14.

Biochemistry

January 2025

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.

SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion.

View Article and Find Full Text PDF

Detection of the SARS-CoV-2 nucleoprotein by electrochemical biosensor based on molecularly imprinted polypyrrole formed on self-assembled monolayer.

Biosens Bioelectron

December 2024

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania. Electronic address:

Herein, we report the development and characterisation of an electrochemical biosensor with a polypyrrole (Ppy)-based molecularly imprinted polymer (MIP) for the serological detection of the recombinant nucleocapsid protein of SARS-CoV-2 (rN). The electrochemical biosensor utilises a Ppy-based MIP formed on a self-assembled monolayer (SAM) at the gold interface to enhance Ppy layer stability on the screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were employed for the electrochemical characterisation of screen-printed gold electrodes (SPGEs) modified with MIP or non-imprinted polymer (NIP) layers.

View Article and Find Full Text PDF

Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!