Cancer during pregnancy is increasingly diagnosed due to the trend of delaying pregnancy to a later age and probably also because of increased use of non-invasive prenatal testing for fetal aneuploidy screening with incidental finding of maternal cancer. Pregnant women pose higher challenges in imaging, diagnosis, and staging of cancer. Physiological tissue changes related to pregnancy makes image interpretation more difficult. Moreover, uncertainty about the safety of imaging modalities, fear of (unnecessary) fetal radiation, and lack of standardized imaging protocols may result in underutilization of the necessary imaging tests resulting in suboptimal staging. Due to the absence of radiation exposure, ultrasound and MRI are obvious first-line imaging modalities for detailed locoregional disease assessment. MRI has the added advantage of a more reproducible comprehensive organ or body region assessment, the ability of distant staging through whole-body evaluation, and the combination of anatomical and functional information by diffusion-weighted imaging which obviates the need for a gadolinium-based contrast-agent. Imaging modalities with inherent radiation exposure such as CT and nuclear imaging should only be performed when the maternal benefit outweighs fetal risk. The cumulative radiation exposure should not exceed the fetal radiation threshold of 100 mGy. Imaging should only be performed when necessary for diagnosis and likely to guide or change management. Radiologists play an important role in the multidisciplinary team in order to select the most optimal imaging strategies that balance maternal benefit with fetal risk and that are most likely to guide treatment decisions. Our aim is to provide an overview of possibilities and concerns in current clinical applications and developments in the imaging of patients with cancer during pregnancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925814 | PMC |
http://dx.doi.org/10.1136/ijgc-2020-001779 | DOI Listing |
Neurosci Biobehav Rev
December 2024
Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas; Department of Psychology, University of Nevada, Las Vegas.
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models.
View Article and Find Full Text PDFJ Med Ultrason (2001)
December 2024
Department of Internal Medicine, Kuma Hospital, Kobe, Hyogo, 650-0011, Japan.
Purpose: Parathyroid lipoadenomas are difficult to recognize preoperatively; hence, they may remain undetected. Difficulty in recognition is thought to be due to the adipocytes present in the tumor. This study aimed to clarify the impact of adipocytes as a component of parathyroid adenomas on ultrasound evaluation.
View Article and Find Full Text PDFArch Orthop Trauma Surg
December 2024
Sitaram Bhartia Institute of Science and Research, New Delhi, India.
Purpose: Achieving precise postoperative alignment is critical for the long-term success of total knee arthroplasty (TKA). Long-leg standing radiograph (LLR) at 6 weeks post-op is the gold standard for assessing alignment, but its reliance on weight-bearing and positioning makes it less practical in the early postoperative period. Supine computed tomography scanogram (CTS) offers a potential alternative.
View Article and Find Full Text PDFNeurosurg Rev
December 2024
Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
Intraoperative assessment of tumor margins can be challenging; as neoplastic cells may extend beyond the margins seen on preoperative imaging. Real-time intraoperative ultrasonography (IOUS) has emerged as a valuable tool for delineating tumor boundaries during surgery. However, concerns remain regarding its ability to accurately distinguish between tumor margins, peritumoral edema, and normal brain tissue.
View Article and Find Full Text PDFSci Rep
December 2024
Multi-Modality Medical Imaging (M3I), TechMed Centre, University of Twente, Technohal 2384,Drienerolaan 5, Enschede, 7522NB, The Netherlands.
Vaginal pessaries have been used for millennia to alleviate symptoms of pelvic organ prolapse (POP). Despite their long-standing use, the success rate of pessary treatment is approximately 60%, and the underlying mechanisms of support are not well understood. This study aims to investigate three previously proposed hypotheses regarding the support mechanisms of pessaries, utilizing supine and upright magnetic resonance imaging (MRI): (1) support by bony structures, (2) support by levator ani muscles (LAM), and (3) the uterus keeping the pessary in place by acting as a lever.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!