Purpose: Using multiparametric MRI data and the pathologic data from radical prostatectomy specimens, we simulated the treatment planning of dose-escalated high-dose-rate brachytherapy (HDR-BT) to the Multiparametric MRI dominant intraprostatic lesion (mpMRI-DIL) to compare the dose potentially delivered to the pathologically confirmed locations of the high-grade component of the cancer.
Methods And Materials: Pathologist-annotated prostatectomy midgland histology sections from 12 patients were registered to preprostatectomy mpMRI scans that were interpreted by four radiologists. To simulate realistic HDR-BT, we registered each observer's mpMRI-DILs and corresponding histology to two transrectal ultrasound images of other HDR-BT patients with a 15-Gy whole-gland prescription. We used clinical inverse planning to escalate the mpMRI-DILs to 20.25 Gy. We compared the dose that the histopathology would have received if treated with standard treatment plans to the dose mpMRI-targeting would have achieved. The histopathology was grouped as high-grade cancer (any Gleason Grade 4 or 5) and low-grade cancer (only Gleason Grade 3).
Results: 212 mpMRI-targeted HDR-BT plans were analyzed. For high-grade histology, the mpMRI-targeted plans achieved significantly higher median [IQR] D98 and D90 values of 18.2 [16.7-19.5] Gy and 19.4 [17.8-20.9] Gy, respectively, in comparison with the standard plans (p = 0.01 and p = 0.003). For low-grade histology, the targeted treatment plans would have resulted in a significantly higher median D90 of 17.0 [16.1-18.4] Gy in comparison with standard plans (p = 0.015); the median D98 was not significantly higher (p = 0.2).
Conclusions: In this retrospective pilot study of 12 patients, mpMRI-based dose escalation led to increased dose to high-grade, but not low-grade, cancer. In our data set, different observers and mpMRI sequences had no substantial effect on dose to histologic cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brachy.2021.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!