In this work, three kinds of gold nanorods (AuNRs) with different aspect ratios were synthesized through conventional seed-mediated growth method, and the chirality of these AuNRs were characterized by circular dichroism (CD) spectroscopy. The results showed that the AuNRs with bigger aspect ratio had larger chirality. The AuNRs with different aspect ratios were applied to distinguish the enantiomers of 19 kinds of α-amino acids. It was found that AuNRs with bigger aspect ratio exhibited the stronger chiral recognition ability. As a proof-of-principle, the AuNRs with the aspect ratio of 4.8 were used to quantitatively recognize enantiomers of valine. Furthermore, the microcalorimetry was applied to study the interaction of AuNRs with amino acid enantiomers. This work provides one method to improve the chiral recognition ability of AuNRs by optimizing the aspect ratio of AuNRs, and helps people better understand the intrinsic chirality of nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.338277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!