Sample bottle coated with sorbent as a novel solid-phase extraction device for rapid on-site detection of BTEX in water.

Anal Chim Acta

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.

Published: April 2021

Solid-phase extraction (SPE) is a popular technique for environmental sample pretreatment. However, SPE usually requires complex sample pretreatment processes, which is time-consuming and inconvenient for real-time and on-site monitoring. Herein, a solvent-free, rapid, and user-friendly SPE device was developed by coating the polydimethylsiloxane (PDMS)/divinylbenzene (DVB) sorbent on the inner wall of a sample bottle. The extraction process and desorption process were both carried out in the bottle. The analytes trapped in the sorbent were thermally desorbed and simultaneously sucked out from the bottle by an air sampling tube equipped on field-portable GC-MS. Different to previous work, the sample pretreatment process didn't require any complicated and time-consuming steps, such as centrifugation or filtration. The total analysis time for each sample was less than 25 min, which was feasible for rapid on-site detection, and thus avoided the losses and contamination of samples in conventional sample storage and transportation processes. Under optimal conditions, the proposed SPE method exhibited wide linear ranges, low detection limits (0.010-0.036 μg L, which were much lower than the maximum levels restricted by the US Environmental Protection Agency and the Chinese GB3838-2002 standard), good intra-bottle repeatability (6.13-7.17%, n = 3) and satisfactory inter-bottle reproducibility (4.73-6.47%, n = 3). Finally, the method was successfully applied to the rapid detection of BTEX in the field. The recoveries of BTEX in spiked water samples ranged from 89.1% to 116.2%. This work presents a novel SPE approach for rapid on-site monitoring in water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338226DOI Listing

Publication Analysis

Top Keywords

rapid on-site
12
sample pretreatment
12
sample bottle
8
solid-phase extraction
8
on-site detection
8
detection btex
8
on-site monitoring
8
water samples
8
sample
7
rapid
5

Similar Publications

A Label-Free Colorimetric Aptasensor for Flavokavain B Detection.

Sensors (Basel)

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.

View Article and Find Full Text PDF

The calcium requirements of dairy cows increase dramatically soon after calving, and many cows have subclinical hypocalcemia, adversely affecting health and performance. Traditional laboratory tests for calcium are complex and not easily adapted to rapid point-of-care applications. The objectives were to evaluate a portable iCa testing device, Horiba LAQUAtwin Ca-11C, for measuring ionized calcium (iCa) in the whole blood of dairy cows and to investigate the iCa-to-total-calcium (tCa) ratio in blood collected from dairy cows within 9 days after calving.

View Article and Find Full Text PDF

High through-put groundwater arsenic speciation analysis using an automated flow analyzer.

J Environ Sci (China)

July 2025

State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363000, China. Electronic address:

The occurrence of geogenic arsenic (As) in groundwater is a global public health concern. However, there remain large gaps in groundwater As data, making it difficult to identify non-compliant domestic wells, partly due to lack of low-cost methods capable of rapid As analysis. Therefore, the development of high through-put and reliable on-site determination methods for inorganic As is essential.

View Article and Find Full Text PDF

Rapid screening of inorganic arsenic in groundwater on-site by a portable three-channel colorimeter.

J Environ Sci (China)

July 2025

Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Rapid screening of inorganic arsenic (iAs) in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection. Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development, an environmental concern that increasingly limits its utilization. This study further improves the Molybdenum Blue (MB) colorimetric method to allow for faster screening with more stable reagents.

View Article and Find Full Text PDF

2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New tracers, 2,4-D-buthylenediamin fluoresceinthiocarbamyl (2,4-D-BDF) and 2,4-D-glycine aminofluorescein (2,4-D-GAF), were obtained and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!