Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of full-length RNAs using long reads reveals the true complexity of processing. However, the relatively high error rates of long-read sequencing technologies can reduce the accuracy of intron identification. Here we apply alignment metrics and machine-learning-derived sequence information to filter spurious splice junctions from long-read alignments and use the remaining junctions to guide realignment in a two-pass approach. This method, available in the software package 2passtools ( https://github.com/bartongroup/2passtools ), improves the accuracy of spliced alignment and transcriptome assembly for species both with and without existing high-quality annotations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919322PMC
http://dx.doi.org/10.1186/s13059-021-02296-0DOI Listing

Publication Analysis

Top Keywords

splice junctions
8
accuracy intron
8
2passtools two-pass
4
two-pass alignment
4
alignment machine-learning-filtered
4
machine-learning-filtered splice
4
junctions increases
4
increases accuracy
4
intron detection
4
detection long-read
4

Similar Publications

Loss of function screens using shRNA (short hairpin RNA) and CRISPR (clustered regularly interspaced short palindromic repeats) are routinely used to identify genes that modulate responses of tumor cells to anti-cancer drugs. Here, by integrating GSEA (Gene Set Enrichment Analysis) and CMAP (Connectivity Map) analyses of multiple published shRNA screens, we identified a core set of pathways that affect responses to multiple drugs with diverse mechanisms of action. This suggests that these pathways represent "weak points" or "Achilles heels", whose mild disturbance should make cancer cells vulnerable to a variety of treatments.

View Article and Find Full Text PDF

Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors.

View Article and Find Full Text PDF

Loeys-Dietz syndrome (LDS) is a connective tissue disorder representing a wide spectrum of phenotypes, ranging from isolated thoracic aortic aneurysm or dissection to a more severe syndromic presentation with multisystemic involvement. Significant clinical variability has been noted for both related and unrelated individuals with the same pathogenic variant. We report a family of five affected individuals with notable phenotypic variability who appear to have two distinct molecular causes of LDS, one attributable to a missense variant in and the other an intronic variant 6 bp upstream from a splice junction in .

View Article and Find Full Text PDF

RNA sequencing (RNA-seq) is widely adopted for transcriptome analysis but has inherent biases that hinder the comprehensive detection and quantification of alternative splicing. To address this, we present an efficient targeted RNA-seq method that greatly enriches for splicing-informative junction-spanning reads. Local splicing variation sequencing (LSV-seq) utilizes multiplexed reverse transcription from highly scalable pools of primers anchored near splicing events of interest.

View Article and Find Full Text PDF

Advances in Disease-Modifying Therapeutics for Chronic Neuromuscular Disorders.

Semin Respir Crit Care Med

December 2024

Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio.

Article Synopsis
  • Neuromuscular disorders significantly impact respiratory function by affecting the muscles involved in breathing, leading to high rates of morbidity and mortality, but new therapies have emerged to help combat these issues.
  • Recent FDA-approved treatments for Myasthenia Gravis (MG) and Spinal Muscular Atrophy (SMA) show promising results; therapies targeting the complement system or enhancing SMN protein production improve respiratory function and overall clinical outcomes.
  • While advancements in treating Late-Onset Pompe Disease (LOPD) and Amyotrophic Lateral Sclerosis (ALS) have been made, the latter still presents challenges, with new drugs only managing to slow progression rather than halt it.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!