Background: Branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) are essential amino acids involved in immune responses, and may have roles in protein malnutrition and sarcopenia. Furthermore, certain liver diseases have been associated with a decreased Fischer's ratio (BCAAs to aromatic amino acids; phenylalanine, tyrosine, and tryptophan). We aimed to evaluate the safety and efficacy of BCAAs use in patients with cancer undergoing surgery.

Methods: MEDLINE, Embase, and CENTRAL were searched (inception to July 24, 2020) for randomized controlled trials (RCTs) and comparative observational studies in English evaluating BCAAs (alone or in combinations) during the oncological peri-operative period. Study selection, data extraction, and quality appraisal were done in duplicate. RCT risk-of-bias was appraised using Cochrane Risk-of-Bias tool, and observational studies' quality assessment was conducted with Newcastle-Ottawa Scale. Meta-analyses were conducted when appropriate.

Results: 20 articles were included comprising 13 RCTs and 6 observational cohort studies in 7 reports and 2019 total participants overall. Among 13 RCTs, 77% involved liver cancer. Methodological study quality scored substantial risk-of-bias across most RCTs. Meta-analysis of RCTs found a 38% decreased risk of post-operative infections in BCAAs group compared to controls (RR = 0.62; 95% CI = 0.44 to 0.87;  = .006; number of RCTs,  = 6; total sample size, N = 389;  = 0%). BCAAs were also found to be beneficial for ascites (RR = 0.55; 95% CI = 0.35 to 0.86;  = .008;  = 4; N = 296;  = 0%), body weight (MD = 3.24 kg; 95% CI = 0.44 to 6.04;  = .02;  = 3; N = 196;  = 24%), and hospitalization length (MD = -2.07 days; 95% CI = -3.97 to -0.17;  = .03;  = 5; N = 362;  = 59%). No differences were found between BCAAs and controls for mortality, recurrence, other post-operative complications (liver failure, edema, pleural effusion), blood loss, quality of life, ammonia level, and prothrombin time. No serious adverse events were related to BCAAs; however, serious adverse events were reported due to intravenous catheters. No safety concerns from observational studies were identified.

Conclusions: Branched-chain amino acids during the oncological surgical period demonstrated promise in reducing important post-operative morbidity from infections and ascites compared to controls. Blinded, placebo-controlled confirmatory trials of higher methodological quality are warranted, especially using oral, short-term BCAAs-enriched supplements within the context of recent ERAS programs.

Prospero Registration: CRD42018086168.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930658PMC
http://dx.doi.org/10.1177/1534735421997551DOI Listing

Publication Analysis

Top Keywords

amino acids
20
branched-chain amino
12
oncological peri-operative
8
peri-operative period
8
bcaas
8
observational studies
8
compared controls
8
95% ci = 044
8
serious adverse
8
adverse events
8

Similar Publications

A real-world pharmacovigilance analysis of potential ototoxicity associated with sacubitril/valsartan based on FDA Adverse Event Reporting System (FAERS).

Sci Rep

December 2024

Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, is widely used to treat heart failure. Despite its efficacy, sacubitril/valsartan inevitably causes adverse events such as hypotension, renal dysfunction, hyperkalemia, and angioedema. Sacubitril/valsartan-associated ototoxicity is often underreported in clinical studies and real-world settings.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!