Cardioprotective effect of red wine and grape pomace.

Food Res Int

Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico. Electronic address:

Published: February 2021

AI Article Synopsis

  • * Winemaking by-products are also significant sources of these phenolic compounds, which help prevent platelet aggregation, improve lipid profiles, and promote vasorelaxation.
  • * Specific phenolic compounds like resveratrol and quercetin have distinct cardioprotective effects, though the concentrations needed for these benefits are higher than what is typically found in red wine; their combined effects may enhance overall protection.

Article Abstract

Several studies have related moderate consumption of red wine with prevention of cardiovascular diseases (CVD). According to epidemiological studies, those regions with high consumption of red wine and a Mediterranean diet show a low prevalence of CVD. Such an effect has been attributed to phenolic compounds present in red wines. On the other hand, by-products obtained during winemaking are also a significant source of phenolic compounds but have been otherwise overlooked. The cardioprotective effect of red wine and its byproducts is related to their ability to prevent platelet aggregation, modify the lipid profile, and promote vasorelaxation. Phenolic content and profile seem to play an important role in these beneficial effects. Inhibition of platelet aggregation is dose-dependent and more efficient against ADP. The antioxidant capacity of phenolic compounds from red wine and its by-products, is involved in preventing the generation of ROS and the modification of the lipid profile, to prevent LDL oxidation. Phenolic compounds can also, modulate the activity of specific enzymes to promote NO production and vasorelaxation. Specific phenolic compounds like resveratrol are related to promote NO, and quercetin to inhibit platelet aggregation. Nevertheless, concentration that causes those effects is far from that in red wines. Synergic and additive effects of a mix of phenolic compounds could explain the cardioprotective effects of red wine and its byproducts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.110069DOI Listing

Publication Analysis

Top Keywords

red wine
24
phenolic compounds
24
platelet aggregation
12
cardioprotective red
8
consumption red
8
compounds red
8
red wines
8
wine byproducts
8
lipid profile
8
effects red
8

Similar Publications

The individual (poly)phenols of red wines cultivated in two different Western Balkan wine-growing regions were determined using the HPLC method, while the ABTS and DPPH tests were employed to investigate antioxidant activity. The reduction potential of antioxidants was determined by FRAP assay. Five distinct classes of phenolic compounds, including phenolic acids, flavan-3-ols, flavonols, stilbenes, and anthocyanins, were identified.

View Article and Find Full Text PDF

Visual detection of kanamycin with functionalized Au nanoparticles.

Mikrochim Acta

January 2025

Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.

A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.

View Article and Find Full Text PDF

The use of nanozymes for electrochemical detection in the food industry is an intriguing area of research. In this study, we synthesized a laccase mimicking the MnO@CeO nanozyme using a simple hydrothermal method, which was characterized by modern analytical methods, such as transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), etc. We found that the addition of MnO significantly increased the laccase-like activity by 300% compared to CeO nanorods.

View Article and Find Full Text PDF

The valorization of grape pomace from Montepulciano winemaking: A new source of functional ingredients for sustainable food industry.

Food Res Int

January 2025

Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy; Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy. Electronic address:

The winemaking process generates huge amounts of waste every year. Fermented grape pomace, the major by-waste product, holds significant value due to its chemical composition and technological properties. In this study a multi-omics approach was employed for the detailed molecular characterization of fermented grape pomace from Montepulciano grape, a widely used Italian red grape variety.

View Article and Find Full Text PDF

Purpose: To evaluate the effects of various beverages on surface roughness and microhardness of PEEK and PEKK polymers.

Methods: Rectangular-shaped PEEK and PEKK polymers were fabricated and examined in the study. The specimens were immersed for 28 days at 37°C in red wine, coffee, and distilled water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!