High hydrostatic pressure (HHP) technique is used as a novel abiotic stress factor for efficiently enhancing the biosynthesis of selected bioactive phytochemicals in germinated wholegrain, but the information about HHP stress-induced metabolic changes remains rather limited. Thus, the current work employed an untargeted gas chromatography-mass spectrometry-based metabolomic approach combining with multivariate models to analyze the effect of mild HHP stress (30 MPa/5 min) on the overall metabolome shifts of wholegrain brown rice (WBR) during germination. Simultaneously, major phenolics in germinated WBR (GBR) were detected by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, to explore the potential relationship between HHP stress-induced rice metabolome alternations and the biotransformation of bioactive components. The results demonstrated that the influence of HHP stress on GBR metabolite profiles was defined by germination durations, as revealed by the differentiation of the stressed grains from the naturally germinated grains at different germination points according to principal component analysis. This was further confirmed by the results of orthogonal projections to latent structures discriminant analysis, in which the discriminating metabolites between naturally germinated and HHP-stressed grains varied across the germination process. The metabolite signatures differentiating natural and HHP-stressed germination included glycerol-3-phosphate, monosaccharides, gamma-aminobutyric acid, 2,3-butanediol, glyceryl-glycoside, amino acids and myo-inositol. Besides, HHP stress led to the increase in ribose, arabinitol, salicylic acid, azelaic acid and gamma-aminobutyric acid, as well as the reduced phenolic acids. These results demonstrated that HHP stress before germination matched with appropriate process parameters could be used as a promising technology to tailor metabolic features of germinated products, thus exerting targeted nutrition and health implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2020.109984 | DOI Listing |
Int J Biol Macromol
December 2024
Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission.
View Article and Find Full Text PDFMethods
November 2024
Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal. Electronic address:
When placed in the eye, contact lenses (CLs) disturb the tear fluid and affect the natural tribological behaviour of the eye. The disruption in the contact mechanics between the ocular tissues can increase frictional shear stress and ocular dryness, causing discomfort. Ultimately, continuous CLs wear can trigger inflammation which is particularly critical for people suffering from dry eye.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA.
Our group has seen great promise in using substituted diaryl-hydrazones to alleviate oxidative stress in preeclampsia. Specifically, fluorinated diaryl-hydrazones have shown great efficacy, confirmed via antioxidant assays and animal trials using pregnant mice. In addition to efficient antioxidant properties, these diaryl-hydrazones are also considered non-toxic.
View Article and Find Full Text PDFMicroorganisms
October 2024
State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
Fungi inhabiting deep subseafloor sediments have been shown to possess anaerobic methane (CH) production capabilities under atmospheric conditions. However, their ability to produce CH under in situ conditions with high hydrostatic pressure (HHP) remains unclear. Here, 20R-7-F01, isolated from ~2 km below the seafloor, was cultured in Seawater Medium (SM) in culture bottles fitted with sterile syringes for pressure equilibration.
View Article and Find Full Text PDFFront Microbiol
November 2024
Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!