Solid-phase epitaxy (SPE) and other three-dimensional epitaxial crystallization processes pose challenging structural and chemical characterization problems. The concentration of defects, the spatial distribution of elastic strain, and the chemical state of ions each vary with nanoscale characteristic length scales and depend sensitively on the gas environment and elastic boundary conditions during growth. The lateral or three-dimensional propagation of crystalline interfaces in SPE has nanoscale or submicrometer characteristic distances during typical crystallization times. An in situ synchrotron hard x-ray instrument allows these features to be studied during deposition and crystallization using diffraction, resonant scattering, nanobeam and coherent diffraction imaging, and reflectivity. The instrument incorporates a compact deposition system allowing the use of short-working-distance x-ray focusing optics. Layers are deposited using radio-frequency magnetron sputtering and evaporation sources. The deposition system provides control of the gas atmosphere and sample temperature. The sample is positioned using a stable mechanical design to minimize vibration and drift and employs precise translation stages to enable nanobeam experiments. Results of in situ x-ray characterization of the amorphous thin film deposition process for a SrTiO/BaTiO multilayer illustrate implementation of this instrument.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0039196DOI Listing

Publication Analysis

Top Keywords

hard x-ray
8
epitaxial crystallization
8
deposition system
8
instrument
4
instrument situ
4
situ hard
4
x-ray
4
x-ray nanobeam
4
nanobeam characterization
4
characterization epitaxial
4

Similar Publications

Hydraulic structures are frequently subjected to soft-water or acidic environments, necessitating serious consideration of the long-term effects of calcium leaching on the durability of concrete structures. Three types of common Portland cement (ordinary Portland cement, moderate-heat cement, and low-heat cement) paste samples widely applied to hydraulic concrete were immersed in a 6 mol/L NHCl solution to simulate accelerated calcium leaching behavior. The mass loss, porosity, leaching depth, compressive strength, and Ca/Si ratio of the three types of pastes were measured at different immersion stages (0, 14, 28, 56, 91, 140, and 180 days).

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Aims: This pilot study aimed to compare the marginal adaptation of composite resin at the tooth-restoration interface, before and after radiation.

Subjects And Methods: Fifteen extracted premolars were divided into 2 experimental groups (based on the timing of irradiation) and 1 control group of 5 teeth each. In Group I (control group), teeth were restored but not exposed to radiation at any stage, Group II: teeth were irradiated before cavity preparation and restoration, and Group III: after cavity preparation and restoration employing selective etch technique, teeth were exposed to radiation.

View Article and Find Full Text PDF

Significance: Pulse oximeter measurements are commonly relied upon for managing patient care and thus often require human testing before they can be legally marketed. Recent clinical studies have also identified disparities in their measurement of blood oxygen saturation by race or skin pigmentation.

Aim: The development of a reliable bench-top performance test method based on tissue-simulating phantoms has the potential to facilitate pre-market assessment and the development of more accurate and equitable devices.

View Article and Find Full Text PDF

Objective: The endoscopic endonasal approach (EEA), has become the preferred alternative to traditional open and transoral approaches to the ventral craniovertebral junction (CVJ) region. However, preoperative prediction of the limitations of caudal reach remains challenging. This cadaveric study aimed to quantify the CVJ area of exposure and access afforded by the EEA, evaluate the accuracy of previously described radiographic anthropometric lines, and identify the lowest limit of the EEA corridor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!