The electron cyclotron resonance heating system is one of the most effective plasma heating systems for controlled nuclear fusion. The key part of the system called gyrotron is driven by a high voltage power supply with a rated output power of hundreds of kilowatts. When the system is in operation, breakdowns frequently occur in the gyrotron. During breakdowns, the gyrotron will endure a large volume of energy and may be damaged. A solid-state switch is required to protect it by blocking high voltage (∼40 kV) within 10 microseconds and limiting energy within a few joules. Compared with Si IGBT/MOSFET, SiC MOSFET with higher switching speed is more suitable for the switch. However, rapid switching speed exacerbates the voltage imbalance. To solve the problems, a reliable module named Advanced Chopper Sub-Model based on SiC MOSFETs for a solid-state switch is proposed. The module adopts a voltage-clamped circuit to achieve the capabilities of rapid switching-off speed, as well as low overvoltage and good voltage balancing. In addition, modules connected in series can tolerate large driver time delay. The SPICE simulation and the double-pulse test are used to validate the effectiveness of the proposed module. The protection performance test was also conducted by using a spark gap to simulate the breakdown fault. Finally, the switch that consists of 64 series-connected modules has been tested at 30 kV/6 A. The turn-off time is ∼5 µs, and the energy during the turn-off transition is 0.283 J. The results show that the switch has good performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0027135 | DOI Listing |
Materials (Basel)
December 2024
Analysis & Standards Center, Korea Institute of Ceramic Engineering & Technology (KICET), 101 Soho-ro, Jinju-si 52851, Republic of Korea.
Boron carbide (BC) is an essential material in various high-performance applications due to its light weight and hardness. In this work, BC-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites' mechanical properties and microstructure were analyzed to investigate the effect of adding minor second-phase particles.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD4072, Australia.
The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
Silicon (Si) is regarded as a promising anode material owing to its high specific capacity and low lithiation potential. The large volume change and the pulverization of silicon during the lithiation/delithiation process hinder its direct energy storage application. This review focuses on the electrospun silicon/carbon (Si/C) nanofiber anode materials for lithium-ion batteries for long-term stable energy storage.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA.
This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests.
View Article and Find Full Text PDFNat Aging
December 2024
Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
Although senescent cells can be eliminated by the immune system, they tend to accumulate with age in various tissues. Here we show that senescent cells can evade immune clearance by natural killer (NK) cells by upregulating the expression of the disialylated ganglioside GD3 at their surface. The increased level of GD3 expression on senescent cells that naturally occurs upon aging in liver, lung, kidney or bones leads to a strong suppression of NK-cell-mediated immunosurveillance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!