UEMtomaton: A Source-Available Platform to Aid in Start-up of Ultrafast Electron Microscopy Labs.

Ultramicroscopy

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA. Electronic address:

Published: April 2021

The steady rise in the number of ultrafast electron microscopy (UEM) labs, in addition to the opacity and lack of detailed descriptions of current approaches that would enable point-by-point construction, has created an opportunity for sharing common methods and instrumentation for (for example) automating data acquisition to assist in efficient lab start-up and to learn about common and robust protocols. In the spirit of open sharing of methods, we provide here a description of an entry-level method and user interface (UI) for automating UEM experiments, and we provide access to the source code and scripts (source-available) for ease of implementation or as a starting reference point for those entering or seeking to enter the field (https://github.com/CEMSFlannigan/UEMtomaton/releases/tag/v1.0). Core instrumentation and physical connections in the UEM lab at Minnesota are described. Interface communication schemes consisting of duo server-client pairs between critical components - the optical delay stage and the UEM digital camera - are presented, with emphasis placed on describing the logic and communications sequence designed to conduct automated series acquisitions. An application designed and programmed with C++/CLI as Windows Forms in Microsoft Visual Studio - dubbed UEMtomaton - is also presented. Key to the UI layout is centralization of the automation tasks and establishment of communication within the software rather than by interfacing with each individual workstation. It is our hope that this note provides useful insight for current and future UEM researchers, particularly with respect to generalizability and portability of the approach to emerging labs. We note that while this basic, entry-level approach is certainly not the most sophisticated or comprehensive of those currently in use, we feel there is nevertheless value in clearly communicating a proven straightforward method to hopefully lower the barrier to entry into the field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2021.113235DOI Listing

Publication Analysis

Top Keywords

ultrafast electron
8
electron microscopy
8
uem
5
uemtomaton source-available
4
source-available platform
4
platform aid
4
aid start-up
4
start-up ultrafast
4
microscopy labs
4
labs steady
4

Similar Publications

Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems.

View Article and Find Full Text PDF

The tomography of photonic quantum states is key in quantum optics, impacting quantum sensing, computing, and communication. Conventional detectors are limited in their temporal and spatial resolution, hampering high-rate quantum communication and local addressing of photonic circuits. Here, we propose to utilize free electron-photon interactions for quantum state tomography, introducing electron homodyne detection with potential for femtosecond-temporal and nanometer-spatial resolutions.

View Article and Find Full Text PDF

Designing Hybrid Plasmonic Superlattices with Spatially Confined Responsive Heterostructural Units.

Nano Lett

January 2025

State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China.

Plasmonic superlattices enable the precise manipulation of electromagnetic fields at the nanoscale. However, the optical properties of static lattices are dictated by their geometry and cannot be reconfigured. Here, we present a surface-interface engineered plasmonic superlattice with confined polyelectrolyte-functionalized metal-organic framework (MOF) hybrid layers to tune plasmon resonance for ultrafast chemical sensing.

View Article and Find Full Text PDF

High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.

View Article and Find Full Text PDF

Unravelling nonclassical beam damage mechanisms in metal-organic frameworks by low-dose electron microscopy.

Nat Commun

January 2025

State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.

Recent advances in direct electron detectors and low-dose imaging techniques have opened up captivating possibilities for real-space visualization of radiation-induced structural dynamics. This has significantly contributed to our understanding of electron-beam radiation damage in materials, serving as the foundation for modern electron microscopy. In light of these developments, the exploration of more precise and specific beam damage mechanisms, along with the development of associated descriptive models, has expanded the theoretical framework of radiation damage beyond classical mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!