Past and present metallurgical activity is the origin of the metallic contamination of some current soils. The purpose of this research is to assess the environmental risk of ancient Fe smelting wastes to the terrestrial compartment. For this purpose, two study sites were investigated in Bourgogne-Franche Comté (France). For each site, the soil contamination (Co, Cu, Fe, Mn, Ni and Zn) and the mobility of each metal from the slag to the topsoils were assessed. The principal results show that the topsoils are particularly enriched in Fe and Mn compared to the reference soils. The bulk chemistry of the slag showed high Fe and Mn content related to the mineralogy of slags, in which the minerals include fayalite, spinel, wustite and glass. In the topsoils, we also observed newly formed minerals (clay minerals, goethite and hematite), which were absent in the reference soils. The presence of slag microfragments in soils and the partial weathering of slags, which contributed to the release of metals in the soils, can explain the contribution of slags to the current contamination of soils. The extensive study of a depth profile from Puisaye showed a low vertical diffusion of the released metal in the heap substratum. We also investigated the fractionation of metals in soils and their environmental availability. The results showed that Mn is generally present in reducible forms or associated with the residual fraction but is less adsorbed to the organic matter (OM) or present in easily exchangeable forms. In contrast, the low extractability of Fe indicates that it is mostly bound to the residual (i.e., mineral) fraction. Based on the easily exchangeable metal concentrations measured in soils, low to medium ecological risks were identified at the sites investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.145929 | DOI Listing |
Appl Biochem Biotechnol
January 2025
CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.
The present study investigated the genomic and functional potential of Burkholderia contaminans PB_AQ24, a bacterial strain isolated from the municipal solid waste dumpsite, for boosting the growth of Dendrocalamus strictus (Male bamboo) seedlings. The isolated strain exhibited high potency for metal solubilization and ACC (1-Aminocyclopropane-1-carboxylate) deaminase activity. Its genome harbored diverse genes responsible for nitrogen and phosphorus utilization (trpABCDES, iaaH, acdS, pstABCS, phoAUD, pqqABCDE, kdpABC, gln, and nirBD) and also an abundance of heavy metal tolerant genes (ftsH, hptX, iscX-fdx-hscAB-iscAUR, mgtA, corA, and copC).
View Article and Find Full Text PDFOecologia
January 2025
Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, No. 84, Jinguang Road, Langfang, 065000, China.
Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Warangal, Warangal, 506004, India.
Granite sludge dust (GSD), a significant byproduct of granite processing globally, poses severe environmental and public health challenges, with India alone generating 200 million tons annually. The conventional use of GSD in soil stabilization and construction materials is limited to 20-30%, underscoring the urgent need for sustainable repurposing solutions within the circular economy catering to broader bulk utilization. Unlike traditional techniques, repurposing granite dust using microbially induced calcite precipitation (MICP) offers a sustainable low-impact and eco-friendly ground improvement solution.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Institute of Invertebrates, Fundación Miguel Lillo, San Miguel de Tucumán, Argentina.
BACKGROUND Ancylostoma caninum is a soil-borne, soil-transmitted helminth with infective larvae and produces cutaneous larva migrans in humans. The objective of this study was to confirm the presence of A. caninum in domestic dogs from the urban-marginal and rural sectors of the Ecuadorian coast through morphometry, culture, and molecular techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!