Particle swarm optimization and global sensitivity analysis for catalytic co-pyrolysis of Chlorella vulgaris and plastic waste mixtures.

Bioresour Technol

Energy and Environment Institute, University of Hull, Cottingham Road, Kingston upon Hull HU6 7RX, United Kingdom; B3 Challenge Group, Department of Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom. Electronic address:

Published: June 2021

AI Article Synopsis

Article Abstract

This study investigated on the co-pyrolysis of microalgae Chlorella vulgaris and high-density polyethylene (HDPE) waste mixtures which was performed with three types of catalysts, namely limestone (LS), HZSM-5 zeolite, and novel bi-functional LS/HZSM-5/LS. Kissinger-Kai (K-K) model-free method was coupled with Particle Swarm Optimization (PSO) model-fitting method using the thermogravimetric experimental data. A global sensitivity analysis was carried out using Latin Hypercube Sampling and rank transformation to assess the extent of impact of the input kinetic parameters on the output results. Furthermore, a thermodynamic analysis was performed to obtain parameters such as enthalpy change (ΔH), Gibb's free energy (ΔG), and entropy change (ΔS). The activation energy (E) of the microalgae Chlorella vulgaris and HDPE binary mixture were found to be lower upon the addition of catalysts. Among the catalyst used, bi-functional LS/HZSM-5 catalyst exhibited the lowest E (83.59 kJ/mol) and ΔH (78 kJ/mol) as compared to LS and HZSM-5 catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.124874DOI Listing

Publication Analysis

Top Keywords

chlorella vulgaris
12
particle swarm
8
swarm optimization
8
global sensitivity
8
sensitivity analysis
8
waste mixtures
8
microalgae chlorella
8
optimization global
4
analysis catalytic
4
catalytic co-pyrolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!