Production of acetoin from renewable resources under heterotrophic and mixotrophic conditions.

Bioresour Technol

Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany. Electronic address:

Published: June 2021

This study aimed to reveal whether Cupriavidus necator H16 is suited for the production of acetoin based on the carboxylic acids acetate, butyrate and propionate under heterotrophic and mixotrophic conditions. The chosen production strain, lacking the polyhydroxybutyrate synthases phaC1 and phaC2, was revealed to be beneficiary for autotrophic acetoin production. Proteomic analysis of the strain determined that the deletions do indeed have a significant impact on pyruvate formation and its subsequent direction towards the introduced acetoin-synthesis pathway. Moreover, the strain was tested for its ability to use typical dark fermentation products under hetero- and mixotrophic conditions. Growth with butyrate and acetate led to low efficiencies, while 46.54% ±0.78 of the added propionate was converted into acetoin. Interestingly, mixotrophic conditions led to simultaneous consumption of acetate and butyrate with the gaseous substrates and lowered efficiency. In contrast, mixotrophic propionate consumption led to diauxic behavior and high carbon efficiency of 71.2% ±0.64.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.124866DOI Listing

Publication Analysis

Top Keywords

mixotrophic conditions
16
production acetoin
8
heterotrophic mixotrophic
8
acetate butyrate
8
mixotrophic
5
production
4
acetoin renewable
4
renewable resources
4
resources heterotrophic
4
conditions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!