Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Machine learning (ML) can expedite directed evolution by allowing researchers to move expensive experimental screens in silico. Gathering sequence-function data for training ML models, however, can still be costly. In contrast, raw protein sequence data is widely available. Recent advances in ML approaches use protein sequences to augment limited sequence-function data for directed evolution. We highlight contributions in a growing effort to use sequences to reduce or eliminate the amount of sequence-function data needed for effective in silico screening. We also highlight approaches that use ML models trained on sequences to generate new functional sequence diversity, focusing on strategies that use these generative models to efficiently explore vast regions of protein space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sbi.2021.01.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!