Mutations in the human gene encoding the neuron-specific Eag1 voltage-gated K channel are associated with neurodevelopmental diseases, indicating an important role of Eag1 during brain development. A disease-causing Eag1 mutation is linked to decreased protein stability that involves enhanced protein degradation by the E3 ubiquitin ligase cullin 7 (CUL7). The general mechanisms governing protein homeostasis of plasma membrane- and endoplasmic reticulum (ER)-localized Eag1 K channels, however, remain unclear. By using yeast two-hybrid screening, we identified another E3 ubiquitin ligase, makorin ring finger protein 1 (MKRN1), as a novel binding partner primarily interacting with the carboxyl-terminal region of Eag1. MKRN1 mainly interacts with ER-localized immature core-glycosylated, as well as nascent nonglycosylated, Eag1 proteins. MKRN1 promotes polyubiquitination and ER-associated proteasomal degradation of immature Eag1 proteins. Although both CUL7 and MKRN1 contribute to ER quality control of immature core-glycosylated Eag1 proteins, MKRN1, but not CUL7, associates with and promotes degradation of nascent, nonglycosylated Eag1 proteins at the ER. In direct contrast to the role of CUL7 in regulating both ER and peripheral quality controls of Eag1, MKRN1 is exclusively responsible for the early stage of Eag1 maturation at the ER. We further demonstrated that both CUL7 and MKRN1 contribute to protein quality control of additional disease-causing Eag1 mutants associated with defective protein homeostasis. Our data suggest that the presence of this dual ubiquitination system differentially maintains Eag1 protein homeostasis and may ensure efficient removal of disease-associated misfolded Eag1 mutant channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039722PMC
http://dx.doi.org/10.1016/j.jbc.2021.100484DOI Listing

Publication Analysis

Top Keywords

eag1 proteins
16
eag1
15
protein homeostasis
12
disease-causing eag1
8
ubiquitin ligase
8
eag1 mkrn1
8
immature core-glycosylated
8
nascent nonglycosylated
8
nonglycosylated eag1
8
proteins mkrn1
8

Similar Publications

Prostaglandin E suppresses KCNH1 gene expression and inhibits the proliferation of CaSki cervical cells through its four prostanoid PTGER subtypes.

Gene

January 2025

Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico. Electronic address:

The main risk factor for cervical cancer is the persistent infection of high-risk HPV subtypes, notably HPV16. Another contributing factor is proinflammatory prostaglandin E (PGE), a lipid abundantly found in seminal fluid. PGE, along with its receptors (PTGER1-4), contributes to cancer development; however, its specific role in the proliferation of cervical cancer models with high HPV16 copy numbers remains unclear.

View Article and Find Full Text PDF

Background: Immunohistochemistry (IHC) is widely used in the management of patients with cervical intraepithelial neoplasia (CIN) but still has many limitations in clinical practice. We analyzed the correlation of new biomarkers with the severity of CIN and follow-up outcomes in patients after conization to improve the management of patients with CIN.

Methods: IHC staining of Eag1 and p16/Ki-67 was performed on cervical tissue sections from 234 patients with suspected CIN2/3.

View Article and Find Full Text PDF

Slow deactivation is a critical property of voltage-gated K channels encoded by the human Ether-à-go-go-Related Gene 1 (hERG). hERG1 channel deactivation is modulated by interactions between intracellular N-terminal Per-Arnt-Sim (PAS) and C-terminal cyclic nucleotide-binding homology (CNBh) domains. The PAS domain is multipartite, comprising a globular domain (gPAS; residues 26-135) and an N-terminal PAS-cap that is further subdivided into an initial unstructured "tip" (residues 1-12) and an amphipathic α-helical region (residues 13-25).

View Article and Find Full Text PDF

Structural modeling of hERG channel-drug interactions using Rosetta.

Front Pharmacol

November 2023

Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.

The human ether-a-go-go-related gene (hERG) not only encodes a potassium-selective voltage-gated ion channel essential for normal electrical activity in the heart but is also a major drug anti-target. Genetic hERG mutations and blockage of the channel pore by drugs can cause long QT syndrome, which predisposes individuals to potentially deadly arrhythmias. However, not all hERG-blocking drugs are proarrhythmic, and their differential affinities to discrete channel conformational states have been suggested to contribute to arrhythmogenicity.

View Article and Find Full Text PDF

Molecular mechanism of EAG1 channel inhibition by imipramine binding to the PAS domain.

J Biol Chem

December 2023

Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA. Electronic address:

Ether-a-go-go (EAG) channels are key regulators of neuronal excitability and tumorigenesis. EAG channels contain an N-terminal Per-Arnt-Sim (PAS) domain that can regulate currents from EAG channels by binding small molecules. The molecular mechanism of this regulation is not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!