Rationale: Hypertension in obesity has become a major threat for public health. Omentin-1, a novel adipokine, is down-regulated in obesity. Tetrahydroxystilbene glycoside (TSG) is the main ingredient extracted from Polygonum multiflorum Thunb (PMT), a traditional Chinese medicinal herb safely used for protecting cardiovascular systems over bimillennium. This study aims to examine (i) the impact of omentin-1 downregulation on obesity-related hypertension in murine models and the underlying mechanisms; (ii) whether tetrahydroxystilbene glycoside (TSG) improved endothelial dysfunction and obesity-associated hypertension via the increase of omentin-1.

Methods: (TSG-treated) male Zucker diabetic fatty (ZDF) rats and omentin-1 knockout (OMT) mice were used. In vitro, human umbilical vein endothelial cells (HUVECs) and mature adipocytes differentiated from human visceral preadipocyte (HPA-v) were maintained in a co-culture system.

Results: TSG was the main active component of PMT reducing systolic blood pressure and improving endothelial vasodilation. Fortnight-TSG treatment (100 mg/kg/day) increased serum omentin-1 level, also activated Akt/eNOS signaling and enhanced NO bioactivity; decreased expression of NOX2 and p22, suppressed production of superoxide and peroxynitrite anion. OMT mice showed elevated blood pressure and impaired endothelial vasorelaxation, whereas hypotensive effect of TSG was blunted. In co-culture system, TSG incubation promoted binding of peroxisome proliferator-activated receptor-γ (PPAR-γ) and Itln-1 promoter in adipocytes, activated Akt/eNOS/NO signaling and attenuated oxidative/nitrative stress in HUVECs. Suppression of Itln-1 with siRNA significantly blocked the protective effect of TSG in vitro.

Conclusions: Down-regulation of omentin-1 induces endothelial dysfunction and hypertension in obesity. TSG treatment (at least partially) increases omentin-1 via promoting binding of PPAR-γ and Itln-1 promoter in adipose tissues, subsequently exerts protective effects on endothelial function via activating Akt/eNOS/NO signaling and attenuating oxidative/nitrative stress. These results suggest that TSG could be developed as a promising anti-hypertension agent that protects against endothelial dysfunction and obesity-associated cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2021.114489DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
16
tetrahydroxystilbene glycoside
12
endothelial
8
dysfunction hypertension
8
hypertension obesity
8
tsg
8
glycoside tsg
8
tsg main
8
dysfunction obesity-associated
8
omt mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!