Recent concerns about the reproducibility of science have led to several calls for more open and transparent research practices and for the monitoring of potential improvements over time. However, with tens of thousands of new biomedical articles published per week, manually mapping and monitoring changes in transparency is unrealistic. We present an open-source, automated approach to identify 5 indicators of transparency (data sharing, code sharing, conflicts of interest disclosures, funding disclosures, and protocol registration) and apply it across the entire open access biomedical literature of 2.75 million articles on PubMed Central (PMC). Our results indicate remarkable improvements in some (e.g., conflict of interest [COI] disclosures and funding disclosures), but not other (e.g., protocol registration and code sharing) areas of transparency over time, and map transparency across fields of science, countries, journals, and publishers. This work has enabled the creation of a large, integrated, and openly available database to expedite further efforts to monitor, understand, and promote transparency and reproducibility in science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951980PMC
http://dx.doi.org/10.1371/journal.pbio.3001107DOI Listing

Publication Analysis

Top Keywords

biomedical literature
8
reproducibility science
8
code sharing
8
disclosures funding
8
funding disclosures
8
disclosures protocol
8
protocol registration
8
transparency
5
assessment transparency
4
transparency indicators
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!