Over the course of the past decade, our group has been intensely interested in achieving the laboratory synthesis of varied members of the coccinellid alkaloid family of natural products. These compounds, produced by varied species of ladybugs throughout the world as defensive agents, include several polycyclic members that can formally be considered as either monomeric or dimeric with architectures that contain between 3 and 7 ring systems along with an array of stereocenters. As a result of their fascinating structures, many groups have achieved syntheses of varied monomeric members using a variety of synthetic strategies and tactics. However, no efforts to synthesize any of the dimeric structures had been reported at the time we began our studies, and only a modest amount of study had been performed as relates to their biosynthesis, with little knowledge of how the larger structures might actually arise in Nature. In this Account, we provide an overview of our general synthetic considerations to achieve a global synthesis of the collection, efforts that have led to date to the formal and total synthesis of 12 different members, 4 at the dimer level. Critical was (1) the identification of a key, common intermediate to enable access to a large number of monomeric substructures in short order, (2) careful thinking as to how the larger structures might arise biosynthetically to fuel building block design, and (3) the development of several reaction cascades that rapidly assembled the majority of their molecular complexity in single-pot operations. Key discoveries in the program include the finding that when efforts to achieve intermolecular dimerizations fail with advanced intermediates, attempts to couple more functionalized fragments earlier and then fold them into the desired structure can be an effective strategy. We also highlight suggestive evidence that a non-natural isomer we originally prepared from one of those cascades may, in fact, be a natural product. And, in particular, we will focus on how two key cascades were developed, as a result of synthetic challenges at varied points in our explorations, which proved capable of forging multiple bonds, rings, and stereocenters in the target structures. One of these includes a designed event that combined 9 different chemical reactions in a single pot and may prove useful for the synthesis of other targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.0c00806 | DOI Listing |
Influenza Other Respir Viruses
January 2025
Department of Pediatrics, Fukushima Medical University, Fukushima, Japan.
Background: Nonpharmaceutical interventions for coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, during the pandemic altered the epidemiology of respiratory viruses. This study aimed to determine the changes in respiratory viruses among children hospitalized from 2018 to 2023.
Methods: Nasopharyngeal specimens were collected from children aged under 15 years with fever and/or respiratory symptoms admitted to a medical institution in Fukushima Prefecture between January 2018 and December 2023.
Angew Chem Int Ed Engl
January 2025
Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.
Electrocatalytic oxidation of cyclohexanol/cyclohexanonein water provides a promising strategy for obtaining adipic acid (AA), which is an essential feedstock in the polymer industry. However, this process is impeded by slow kinetics and limited Faradaic efficiency (FE) due to a poor understanding of the reaction mechanism. Herein, NiCo2O4/CeO2 is developed to enable the electrooxidation of cyclohexanol to AA with a 0.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany. Electronic address:
In recent years, nanozyme-based analytics have become popular. Among these, laccase nanozyme-based colorimetric sensors have emerged as simple and rapid colorimetric detection methods for various analytes, effectively addressing natural enzymes' stability and high-cost limitations. Laccase nanozymes are nanomaterials that exhibit inherent laccase enzyme-like activity.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, PR China. Electronic address:
Development of sensitive and cost-effective strategies for detecting influenza viruses is crucial to combat the spread of infectious diseases. In this study, a novel trans-dimensional nanocoral gold foam (NCGF) was fabricated on screen-printed carbon electrodes using hydrogen template electrodeposition method. This unique structure, with interconnected large and small pores, significantly increased the specific surface area and stability of the sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!