The controlled assembly of well-defined planar nanoclusters from molecular precursors is synthetically challenging and often plagued by the predominant formation of 3D-structures and nanoparticles. Herein, we report planar iron hydride nanoclusters from reactions of main group element hydrides with iron(II) bis(hexamethyldisilazide). The structures and properties of isolated Fe , Fe , and Fe nanoplatelets and calculated intermediates enable an unprecedented insight into the underlying building principle and growth mechanism of iron clusters, metal monolayers, and nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919527PMC
http://dx.doi.org/10.1002/open.202000307DOI Listing

Publication Analysis

Top Keywords

planar iron
8
iron hydride
8
hydride nanoclusters
8
nanoclusters combined
4
combined spectroscopic
4
spectroscopic theoretical
4
theoretical insights
4
insights structures
4
structures building
4
building principles
4

Similar Publications

Elucidating the high affinity copper(II) complexation by the iron chelator deferasirox provides therapeutic and toxicity insight.

ChemMedChem

December 2024

University of Puerto Rico Rio Piedras: Universidad de Puerto Rico Recinto de Rio Piedras, Chemistry, 17 University Avenue, 00925, San Juan, UNITED STATES OF AMERICA.

Deferasirox (Def), an orally administered iron-chelating drug, has drawn significant interest in repurposing for anticancer application due to the elevated Fe demand by cancer cells. But there are also concerns about its severe off target health effects. Herein Cu(II) binding is studied as a potential off target interaction.

View Article and Find Full Text PDF

NiFe-based materials, especially NiFe layered double hydroxides (LDHs), are recognized as the most promising non-precious metal electrocatalysts for alkaline oxygen evolution reaction (OER). However, the precisely designed distribution of active sites for enhancing activities is still significantly restricted due to the lack of reasonable modulation strategies. Herein, sulfur doped Ni/Fe gradient-distributed LDH (GD-NiFe LDH/S) is fabricated by facile air-induced strategy at room temperature.

View Article and Find Full Text PDF

Iron-Oxide Nanoparticles Embedded in 3D-Printed PLA/HA Scaffolds for Magnetic Hyperthermia Therapy: An Experimental-Numerical Analysis of Thermal Behavior.

Materials (Basel)

November 2024

Grupo Novos Materiais, CINTECX (Centro de Investigación en Tecnoloxía, Enerxía e Procesos Industriais), Universidade de Vigo, 36310 Vigo, Spain.

Hyperthermia is nowadays intensively investigated as a promising strategy to improve the therapeutic efficacy against different types of cancer and resistant infections. In particular, the remote generation of localized hyperthermia by magnetic field through iron-oxide nanoparticles (IONPs) offers good thermal conductivity in a controlled area. The incorporation of these IONPs in 3D-printed scaffolds designed for bone tissue regeneration has been scarcely addressed in the literature.

View Article and Find Full Text PDF

Developmental changes in prefrontal cortex (PFC) excitatory (glutamatergic, Glu) and inhibitory (gamma- aminobutryic acid, GABA) neurotransmitter balance (E:I) have been identified during human adolescence, potentially reflecting a critical period of plasticity that supports the maturation of PFC-dependent cognition. Animal models implicate increases in dopamine (DA) in regulating changes in PFC E:I during critical periods of development, however, mechanistic relationships between DA and E:I have not been studied in humans. Here, we used high field (7T) echo planar imaging (EPI) in combination with Magnetic Resonance Spectroscopic Imaging (MRSI) to assess the role of basal ganglia tissue iron-reflecting DA neurophysiology-in longitudinal trajectories of dorsolateral PFC Glu, GABA, and their relative levels (Glu:GABA) and working memory performance from adolescence to adulthood in 153 participants (ages 10-32 years old, 1-3 visits, 272 visits total).

View Article and Find Full Text PDF

The interaction between different metals (M), axial ligands (L), and ring substituents (R) in porphyrins was investigated using density functional theory. Different combinations of iron and cobalt as metal centers; imidazole, chlorine, and an n-heterocyclic carbene (NHC) as axial ligands, and unsubstituted, octaethyl-, and tetraphenyl-porphyrins were explored in their low, intermediate, and high-spin states, alongside oxygen affinity. Remarkably, the n-heterocyclic carbene enhanced the affinity of cobalt porphyrins to oxygen, with binding energies on average 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!