Nanophthalmos-Associated MYRF Gene Mutation Causes Ciliary Zonule Defects in Mice.

Invest Ophthalmol Vis Sci

State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.

Published: March 2021

Purpose: Patients with nanophthalmos who undergo intraocular surgery often present with abnormal ciliary zonules. In a previous study, we reported mutation in MYRF that is implicated in the pathogenesis of nanophthalmos. The aim of this study was to model the mutation in mice to explore the role of MYRF on zonule structure and its major molecular composition, including FBN1 and FBN2.

Methods: Human MYRF nanophthalmos frameshift mutation was generated in mouse using the CRISPR-Cas9 system. PCR and Sanger sequencing were used for genotype analysis of the mice model. Anterior chamber depth (ACD) was measured using hematoxylin and eosin-stained histology samples. Morphologic analysis of ciliary zonules was carried out using silver staining and immunofluorescence. Transcript and protein expression levels of MYRF, FBN1, and FBN2 in ciliary bodies were quantified using quantitative real-time PCR (qRT-PCR) and Western blot.

Results: A nanophthalmos frameshift mutation (c.789delC, p.N264fs) of MYRF in mice showed ocular phenotypes similar to those reported in patients with nanophthalmos. ACD was reduced in MYRF mutant mice (MYRFmut/+) compared with that in littermate control mice (MYRF+/+). In addition, the morphology of ciliary zonules showed reduced zonular fiber density and detectable structural dehiscence of zonular fibers. Furthermore, qRT-PCR analysis and Western blot showed a significant decrease in mRNA expression levels of MYRF, FBN1, and FBN2 in MYRFmut/+ mice.

Conclusions: Changes in the structure and major molecular composition of ciliary zonules accompanied with shallowing anterior chamber were detected in MYRFmut/+ mice. Therefore, MYRF mutant mice strain is a useful model for exploring pathogenesis of zonulopathy, which is almost elusive for basic researches due to lack of appropriate animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937999PMC
http://dx.doi.org/10.1167/iovs.62.3.1DOI Listing

Publication Analysis

Top Keywords

ciliary zonules
16
mice
8
patients nanophthalmos
8
myrf
8
structure major
8
major molecular
8
molecular composition
8
nanophthalmos frameshift
8
frameshift mutation
8
anterior chamber
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!