Optimizing plasmon enhanced luminescence in silicon nanocrystals by gold nanorods.

Nanoscale

Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague, Czech Republic.

Published: March 2021

The great application potential of photoluminescent silicon nanocrystals, especially in biomedicine, is significantly reduced due to their limited radiative rate. One of the possible ways to overcome this limitation is enhancing the luminescence by localized plasmons of metallic nanostructures. We report an optimized fabrication of gold nanorod - silicon nanocrystal core-shell nanoparticles with the silica shell as a tunable spacer. The unprecedented structural quality and homogeneity of our hybrid nanoparticles allows for detailed analysis of their luminescence. A strong correlation between dark field scattering and luminescence spectra is shown on a single particle level, indicating a dominant role of the longitudinal plasmonic band in luminescence enhancement. The spacer thickness dependence of photoluminescence intensity enhancement is investigated using a combination of experimental measurements and numerical simulations. An optimal separation distance of 5 nm is found, yielding a 7.2× enhancement of the luminescence intensity. This result is mainly attributed to an increased quantum yield resulting from the Purcell enhanced radiative rate in the nanocrystals. The ease of fabrication, low cost, long-term stability and great emission properties of the hybrid nanoparticles make them a great candidate for bio-imaging or even targeted cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr00058fDOI Listing

Publication Analysis

Top Keywords

silicon nanocrystals
8
radiative rate
8
hybrid nanoparticles
8
luminescence
6
optimizing plasmon
4
plasmon enhanced
4
enhanced luminescence
4
luminescence silicon
4
nanocrystals gold
4
gold nanorods
4

Similar Publications

Germanium nanocrystal non-volatile memory devices: fabrication, charge storage mechanism and characterization.

Nanoscale

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.

The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.

View Article and Find Full Text PDF

Unstable solid-electrolyte interphase (SEI) film resulting from chemically active surface state and huge volume fluctuation limits the development of Si-based anode materials in lithium-ion batteries. Herein, a photo-initiated polypyrrole (PPy) coating is manufactured on Si nanoparticles to guide the in situ generation of PPy-integrated hybrid SEI film (hSEI). The hSEI film shows excellent structure stability and optimized component composition for lithium storage.

View Article and Find Full Text PDF

Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.

View Article and Find Full Text PDF

Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!