Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Previous studies have demonstrated that hippocampal atrophy is a hallmark of dementia and can be used to predict the outcome of post-stroke demented (PSD) patients. The hippocampus consists of several subfields but their involvement in the pathophysiology of the PSD remains unclear.
Objective: The present study aimed to investigate volumetric alterations of hippocampal subfields in patients with PSD.
Methods: High-resolution T1-weighted images were collected from 27 PSD and 28 post-stroke nondemented (PSND) patients who recovered from ischemic stroke, and 17 age-matched normal control (NC). We estimated the volumes of the hippocampal subfields using FreeSurfer 6.0 which segmented the hippocampus into 12 subfields in each hemisphere. The volumetric differences between the groups were evaluated by the two-sample tests after regressing out the age, sex, education, and total intracranial volume.
Results: Compared with NC group, PSD group showed smaller volumes in the entire hippocampus and its subfields, and such differences were not found in PSND group. Moreover, we found the dementia-specific atrophy in the left granule cell layer of dentate gyrus (GC-DG) and CA4 in the PSD patients compared with NC and PSND. Regression analysis showed positive correlations between the changes of cognitive performance and the asymmetry index in the CA3/4 and GC-DG of the PSD group. Furthermore, we found that the volumes of hippocampal subfields provided a better classification performance than the entire hippocampus.
Conclusion: Our findings suggest that the hippocampus is reduced in the PSD patients and it presents a selective subfield involvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-200804 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!