Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c21579DOI Listing

Publication Analysis

Top Keywords

high photothermal
8
photothermal conversion
8
hetero-core-shell bins-fe@fe
4
potential
4
bins-fe@fe potential
4
theranostic
4
potential theranostic
4
theranostic nanoplatform
4
nanoplatform multimodal
4
multimodal imaging-guided
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!