Pathogens utilize various mechanisms to escape host immunological surveillance, break down different tissue barriers, and cause infection. Sialylation is an important surface modification of bacterial outer membrane components, especially the lipooligosaccharide of Gram-negative bacteria. It is widely involved in multiple microbe-host interactions, such as bacterial virulence regulation, host recognition, and immune evasion. There are some sialylation modifications on the lipooligosaccharide structure of () virulent strains. However, the role of lipooligosaccharide sialylation modification in the process of infection and penetration of the porcine respiratory epithelial barrier is still unclear. In this study, we investigated the role and mechanism of -mediated lipooligosaccharide sialylation in invasion of the host respiratory epithelial barrier. Specifically, -mediated lipooligosaccharide sialylation and sialylated-lipooligosaccharide interacted with Siglec1 on porcine alveolar macrophages 3D4/21 and triggered the subsequent generation of TGFβ1 through Siglec1/Dap12/Syk/p38 signaling cascade. TGFβ1 decreased the tracheal epithelial tight junctions and the expression of extracellular adhesion molecule fibronectin, thus assisting invasion and entry to the respiratory epithelial barrier. Characterizing the potential effects and mechanisms of lipooligosaccharide sialylation-mediated TGFβ1 production would further expand our current knowledge on the pathogenesis of which will contribute to better prevention and control of infection in piglets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.0c00850 | DOI Listing |
BMC Microbiol
December 2024
Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, 330052, P.R. China.
Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.
View Article and Find Full Text PDFSci Rep
December 2024
Airway Innate Immunity Research Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system.
View Article and Find Full Text PDFDiscov Med
December 2024
Department of Respiratory Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031 Hefei, Anhui, China.
Background: Chronic obstructive pulmonary disease (COPD) is a prevalent yet manageable respiratory condition. However, treatments presently used normally have side effects and cannot cure COPD, making it urgent to explore effective medications. The ginsenoside Rg3 (Rg3) has been shown to have anti-inflammatory and anti-tumor properties and can improve COPD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!