As a precious traditional Chinese medicine(TCM), snake bile has been widely used in numerous Chinese medicine prescriptions. Bile acid(BA) derivatives have been demonstrated as the primary chemical family in snake bile. In-depth chemical characterization of BAs is of great importance towards the establishment of quality standards and clarification of the effective material basis for snake bile. This study firstly employed ~1H-NMR to preliminarily analyze the chemical profiles of snake bile, an automated fraction collector was subsequently implemented to obtain the fractions-of-interest. The fraction was then concentrated and re-analyzed by LC-MS. Based on ~1H-NMR, BAs were found to be the main components of snake bile, and six BAs including CDCA, CA, TCDCA, TCA, TDCA and GCA were tentatively identified from the representative spectrum with the assistance of literature and reference compounds. Whereas the content of TCA in snake bile was too great, resulting in a great obstacle for the detection of trace components, the automated fraction collector was subsequently implemented to obtain the fractions-of-interest for LC-MS analysis. According to matching MS/MS information and retention time with reference compounds as well as database retrieval, a total of 57 BAs were detected and annotated. Because of the combination of ~1H-NMR and LC-MS platforms, the findings are beneficial for the in-depth characterization of BAs in snake bile, which provides references for the establishment of quality control and evaluation methods of snake bile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20200628.204 | DOI Listing |
ACS Omega
October 2024
Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China.
Based on UHPLC-QTOF-MS analysis and quantized processing, combined with machine learning algorithms, data modeling was carried out to realize digital identification of bear bile powder (BBP), chicken bile powder (CIBP), duck bile powder (DBP), cow bile powder (CBP), sheep bile powder (SBP), pig bile powder (PBP), snake bile powder (SNBP), rabbit bile powder (RBP), and goose bile powder (GBP). First, 173 batches of bile samples were analyzed by UHPLC-QTOF-MS to obtain the retention time-exact mass (RTEM) data pair to identify bile acid-like chemical components. Then, the data were modeled by combining support vector machine (SVM), random forest (RF), artificial neural network (ANN), gradient boosting (GB), AdaBoost (AB), and Naive Bayes (NB), and the models were evaluated by the parameters of accuracy (Acc), precision (P), and area under the curve (AUC).
View Article and Find Full Text PDFJ Chromatogr A
November 2024
Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:
Natural bile acids, a class of steroids with a valeric acid side chain at the C-17 position, present significant challenges in separation and analysis due to structural similarities, isomerism, and large polarity differences. Therefore, advanced analytical methods are essential for the accurate identification and quantification of bile acids. This study conducted a comprehensive qualitative analysis of bile acids by integrating liquid chromatography-tandem mass spectrometry (LC-MS/MS), hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS), and quantitative structure-retention relationship (QSRR) methods.
View Article and Find Full Text PDFACS Omega
May 2024
Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
Enzymatic degumming utilizing phospholipase enzymes could be used in ecologically friendly procedures with enhanced oil recovery yields. In this study, two phospholipases A of group I and II, WaPLA-I and WaPLA-II, from the snake venom of Saudi were evaluated for soybean oil degumming after being immobilized on three different support materials (calcium alginate (CA), CA-gelatin (CAG), and CA-chitosan (CAC), and cross-linked with glutaraldehyde). Higher yields of CAC-immobilized PLA-I (85 ± 3%) and PLA-II (87 ± 3.
View Article and Find Full Text PDFEndocrinology
August 2023
Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
Modulation of bile acid (BA) structure is a potential strategy for obesity and metabolic disease treatment. BAs act not only as signaling molecules involved in energy expenditure and glucose homeostasis, but also as regulators of food intake. The structure of BAs, particularly the position of the hydroxyl groups of BAs, impacts food intake partly by intestinal effects: (1) modulating the activity of N-acyl phosphatidylethanolamine phospholipase D, which produces the anorexigenic bioactive lipid oleoylethanolamide (OEA) or (2) regulating lipid absorption and the gastric emptying-satiation pathway.
View Article and Find Full Text PDFPLoS Negl Trop Dis
March 2023
School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil.
Background: In the Brazilian Amazon, snakebite envenomings (SBE) disproportionately affect indigenous peoples. Communication between indigenous and biomedical health sectors in regards to SBEs has never been explored in this region. This study aims to build an explanatory model (EM) of the indigenous healthcare domain for SBE patients from the perspective of the indigenous caregivers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!