A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Metabonomics study of Shouhui Tongbian Capsules in slow transit constipation based on UPLC-ESI-QE-Orbitrap-MS]. | LitMetric

[Metabonomics study of Shouhui Tongbian Capsules in slow transit constipation based on UPLC-ESI-QE-Orbitrap-MS].

Zhongguo Zhong Yao Za Zhi

Center for New Drug Pharmacology, Lunan Pharmaceutical Group Co., Ltd. Linyi 276006, China State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine Linyi 276006 China Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine Linyi 276006, China.

Published: February 2021

The effect of Shouhui Tongbian Capsules(SHTB) on the endogenous metabolites of colon tissue in mice with slow transit constipation was analyzed by metabolomics methods to explore its mechanism in the treatment of constipation. ICR mice were randomly divided into normal group, model group and SHTB group according to the body weight. The mice were given diphenoxylate to establish the slow transit constipation model. Mouse carbon ink pushing rate, first defecation time and the number of defecation particles in 12 h were observed. The mouse colon tissue was separated and the mucous cells were detected by Periodic acid Schiff and Alcian blue(AB-PAS) staining. Ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry(UPLC-ESI-Orbitrap-MS/MS) technology was used to characterize the differences in tissue metabolism to screen out the potential different metabolites and possible metabolic pathways in colon tissue. The results indicated that SHTB could significantly shorten the first defecation time and the number of defecations, and increase the number of intestinal peristalsis and mucous cells in the colonic mucosa compared to the model mice. Metabolomics results showed that, compared with the normal group, a total of 17 potential biomarkers, including L-kynurenine, N6,N6,N6-trimethyl-L-lysine, L-formylkynurenine, N6-acetyl-L-lysine, L-phenylalanine, phenylacetaldehyde, xanthoxin, thymidine, glycyl-L-leucine, cystathionine,(R)-1-aminopropan-2-ol, deoxycytidine, gamma-glutamyl-gamma-aminobutyraldehyde, D-galactose, L-arginine, L-proline and pyruvate, were found and identified in colon tissue. Treated with SHTB, these metabolic differences tended to return to normal levels. Therefore, it could be made a conclusion that the therapeutic effect of SHTB on chronic transit constipation may be related to regulating phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline metabolism, cysteine and methionine metabolism, tyrosine metabolism, arginine biosynthesis, pyruvate metabolism, glycolysis, pyrimidine metabolism, tricarboxylic acid cycle and galactose metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20201116.401DOI Listing

Publication Analysis

Top Keywords

transit constipation
16
colon tissue
16
slow transit
12
shouhui tongbian
8
normal group
8
defecation time
8
time number
8
mucous cells
8
metabolism
8
constipation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!