Background: Culex quinquefasciatus resistance to the binary toxin from Lysinibacillus sphaericus larvicides can occur because of mutations in the cqm1 gene that prevents the expression of the toxin receptor, Cqm1 α-glucosidase. In a resistant laboratory-selected colony maintained for more than 250 generations, cqm1 and cqm1 resistance alleles were identified. The major allele initially found, cqm1 , became minor and was replaced by cqm1 . This study aimed to investigate the features associated with homozygous larvae for each allele to understand the reasons for the allele replacement and to generate knowledge on resistance to microbial larvicides.

Results: Homozygous larvae for each allele were compared. Both larvae displayed the same level of resistance to the binary toxin (3500-fold); therefore, a change in phenotype was not the reason for the replacement observed. The lack of Cqm1 expression did not reduce the total specific α-glucosidase activity for homozygous cqm1 and cqm1 larvae, which were statistically similar to the susceptible strain, using artificial or natural substrates. The expression of eight Cqm1 paralog α-glucosidases was demonstrated in resistant and susceptible larvae. Bioassays in which cqm1 or cqm1 homozygous larvae were reared under stressful conditions showed that most adults produced were cqm1 homozygous (69%). Comparatively, in the offspring of a heterozygous sub-colony reared under optimal conditions for 20 generations, the cqm1 allele assumed a higher frequency (0.72).

Conclusion: Homozygous larvae for each allele exhibited a similar resistant phenotype. However, they presented specific advantages that might favor their selection and can be used in designing resistance management practices. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6349DOI Listing

Publication Analysis

Top Keywords

homozygous larvae
20
cqm1
15
cqm1 cqm1
12
larvae allele
12
culex quinquefasciatus
8
larvae
8
lysinibacillus sphaericus
8
sphaericus larvicides
8
resistance binary
8
binary toxin
8

Similar Publications

Disruption of the odorant receptor co-receptor (Orco) reveals its critical role in multiple olfactory behaviors of a cosmopolitan pest.

Insect Biochem Mol Biol

December 2024

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China. Electronic address:

The olfactory system of insects plays a pivotal role in multiple, essential activities including feeding, mating, egg laying, and host localization. The capacity of odorant receptors to recognize odor molecules relies on odorant receptor co-receptors forming heterodimers. Here we report the successful engineering a homozygous mutant strain of diamondback moth (Plutella xylostella) in which the odorant receptor co-receptor PxOrco was silenced using CRISPR/Cas9.

View Article and Find Full Text PDF

Aim: This study aimed to create an f9l mutant zebrafish using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and characterize its coagulation properties to investigate its functional similarity to human FX and explore the potential synergy between f9l and f10.

Methods: Three gRNAs targeting exon 8 encoded by the catalytic domain of the f9l gene were injected into 300 single-cell zebrafish embryos using CRISPR/Cas9 technology. DNA from the resulting adults was extracted from tail tips, and PCR was used to detect indels.

View Article and Find Full Text PDF

Haematopoietic stem and progenitor cells (HSPCs) arise from the aorta-gonad-mesonephros and migrate to the caudal haematopoietic tissue (CHT) in zebrafish, where nascent HSPCs undergo tightly controlled proliferation and differentiation to promote definitive haematopoiesis. Effective expansion of HSPCs requires the coordination of well-established vesicle trafficking systems and appropriate transcription factors. However, the underlying molecules are yet to be identified.

View Article and Find Full Text PDF

Background: Insecticides are a crucial component of vector control. However, resistance constitute a threat on their efficacy and the gains obtained over the years through malaria vector control. In Gabon, little data on phenotypic insecticide resistance in Anopheles vectors are published, compromising the rational implementation of resistance management strategies.

View Article and Find Full Text PDF

Background: The F116V mutation in the substrate recognition site 1 (SRS1) of Spodoptera exigua CYP9A186 has been demonstrated to confer ~200-fold resistance to emamectin benzoate (EB). In this study, a novel mutation (F116I) in CYP9A25, orthologous to CYP9A186, was detected in a field population of Spodoptera litura (YJ22) collected from Yuanjiang, Yunnan province, China in 2022. The association of this mutation with EB resistance was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!