A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrodynamic collision between a microswimmer and a passive particle in a micro-channel. | LitMetric

Microswimmers interacting with passive particles in confinement are common in many systems, e.g., spermatozoa encountering other cells or debris in the female reproductive tract or active particles interacting with polymers and tracers in microfluidic channels. The behaviour of such systems is driven by simultaneous, three way hydrodynamic interactions between the microswimmer, the passive particle and the microchannel walls. Therefore, in this work we investigate the hydrodynamic collision between a model microswimmer and a passive particle using three different methods: (i) the point particle approach, (ii) analytical calculations based on method of reflections, and (iii) lattice Boltzmann numerical simulations. We show that the hydrodynamic collision is essentially an asymmetric process - the trajectory of the microswimmer is altered only in an intermediate stage while the passive particle undergoes a three stage displacement with a net displacement towards or away from the microchannel walls. The path of the passive particle is a simple consequence of the velocity field generated by the swimmer: an open triangle in bulk fluid and a loop-like trajectory in confinement. We demonstrate the generality of our findings and conclude that the net displacement of the passive particle due to collision may be capitalised in order to develop applications such as size separation of colloidal particles and deposition of particles in the microchannel interiors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm02140gDOI Listing

Publication Analysis

Top Keywords

passive particle
24
hydrodynamic collision
12
microswimmer passive
12
microchannel walls
8
net displacement
8
passive
7
particle
7
hydrodynamic
4
microswimmer
4
collision microswimmer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!