Freestanding and Flexible β-MnO@Carbon Sheet for Application as a Highly Sensitive Dimethyl Methylphosphonate Sensor.

ACS Omega

Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.

Published: February 2021

Research on wearable sensor systems is mostly conducted on freestanding polymer substrates such as poly(dimethylsiloxane) and poly(ethylene terephthalate). However, the use of these polymers as substrates requires the introduction of transducer materials on their surface, which causes many problems related to the contact with the transducer components. In this study, we propose a freestanding flexible sensor electrode based on a β-MnO-decorated carbon nanofiber sheet (β-MnO@CNF) to detect dimethyl methylphosphonate (DMMP) as a nerve agent simulant. To introduce MnO on the surface of the substrate, polypyrrole coated on poly(acrylonitrile) (PPy@PAN) was reacted with a MnO precursor. Then, phase transfer of PPy@PAN and MnO to carbon and β-MnO, respectively, was induced by heat treatment. The β-MnO@CNF sheet electrode showed excellent sensitivity toward the target analyte DMMP (down to 0.1 ppb), as well as high selectivity, reversibility, and stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905932PMC
http://dx.doi.org/10.1021/acsomega.0c06035DOI Listing

Publication Analysis

Top Keywords

freestanding flexible
8
dimethyl methylphosphonate
8
flexible β-mno@carbon
4
β-mno@carbon sheet
4
sheet application
4
application highly
4
highly sensitive
4
sensitive dimethyl
4
methylphosphonate sensor
4
sensor wearable
4

Similar Publications

Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. TiCT MXene provides several advantages over traditional metallic current collectors like Cu and Ti, including better Zn plating affinity, lightweight, and flexibility. However, self-freestanding MXene current collectors in AZMBs remain underexplored, likely due to challenges with Zn deposition reversibility.

View Article and Find Full Text PDF

Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.

View Article and Find Full Text PDF

In Situ TEM Study of Electrical Property and Mechanical Deformation in MoS/Graphene Heterostructures.

Nanomaterials (Basel)

January 2025

Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

We present a versatile method for synthesizing high-quality molybdenum disulfide (MoS) crystals on graphite foil edges via chemical vapor deposition (CVD). This results in MoS/graphene heterostructures with precise epitaxial layers and no rotational misalignment, eliminating the need for transfer processes and reducing contamination. Utilizing in situ transmission electron microscopy (TEM) equipped with a nano-manipulator and tungsten probe, we mechanically induce the folding, wrinkling, and tearing of freestanding MoS crystals, enabling the real-time observation of structural changes at high temporal and spatial resolutions.

View Article and Find Full Text PDF

Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review.

Adv Mater

January 2025

Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.

Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.

View Article and Find Full Text PDF

Highly flexible free-standing bacterial cellulose-based filter membrane with tunable wettability for high-performance water purification.

Int J Biol Macromol

December 2024

Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:

Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!