NO dissociative adsorption onto 3d metal particles M (M = Fe, Co, Ni, and Cu) was investigated theoretically using density functional theory computations. A transition state exists at higher energy in the Cu case but at lower energy in the Fe, Co, and Ni cases than the reactant (sum of M and NO), indicating that Cu is not reactive for NO dissociative adsorption because NO desorption occurs more easily than the N-O bond cleavage in this case, but Fe, Co, and Ni are reactive because NO desorption needs a larger destabilization energy than the N-O bond cleavage. This result agrees with the experimental findings. The energy of transition state (TS) becomes higher in the order of Fe < Co < Ni ≪ Cu. Exothermicity (relative energy to the reactant) decreases in the order of Fe > Co > Ni ≫ Cu. These results indicate that the reactivity for NO dissociative adsorption decreases kinetically and thermodynamically in this order. In addition, the (TS) and values show that 3d metal particles are more reactive than 4d metal particles when a comparison is made in the same group of the periodic table. Charge transfer (CT) from the metal particle to NO increases as the reaction proceeds. The CT quantity to NO at the TS increases in the order of Cu < Ni < Co < Fe, identical to the increasing order of reactivity. The negative charges of the N and O atoms of the product (N and O adsorbed M) increase in the order of Ni < Co < Cu < Fe, identical to the increasing order of except for the Cu case; in the Cu case, the discrepancy between the order of and those of the N and O negative charges arises from the presence of valence 4s electron of Cu because it suppresses the CT from N and O to Cu. From these results, one can infer that the d-valence band-top energy of M plays an important role in determining the reactivity for NO dissociative adsorption. Truly, the d valence orbital energy decreases in the order of Fe > Co > Ni ≫ Cu and the 3d metal > 4d metal in the same group of the periodic table, which reflects the dependence of reactivity on the metal element position in the periodic table.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905950 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05838 | DOI Listing |
Biomimetics (Basel)
December 2024
Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Inspired by our recent success in designing CO-phobic and CO-philic domains on nano-MgO for effective CO adsorption, our ongoing efforts focus on incorporating dopants into pristine MgO to further enhance its CO adsorption capabilities. However, a clear set of guidelines for dopant selection and a holistic understanding of the underlying mechanisms is still lacking. In our investigation, we combined first-principles calculations with experimental approaches to explore the crystal and electronic structural changes in MgO doped with high-valence elements (Al, C, Si, and Ti) and their interactions with CO.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.
Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.
View Article and Find Full Text PDFChemphyschem
January 2025
University of Leeds, School of Chemistry, Woodhouse Lane, LS2 9JT, Leeds, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The orthorhombic structure of FeNbO4, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. We have used DFT+U-D2 calculations to explore the adsorption and dissociation of H2 molecules and the formation reaction of water at the (010) and (111) surfaces. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material.
View Article and Find Full Text PDFNat Commun
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China.
Active and stable electrocatalysts are essential for hydrogen production from alkaline water electrolysis. However, precisely controlling the interaction between electrocatalysts and reaction intermediates (HO*, H*, and *OH) remains challenging. Here, we demonstrate an yttrium-doped NiMo-MoO heterogenous electrocatalyst that efficiently promotes water dissociation and accelerates the intermediate adsorption/desorption dynamics in alkaline electrolytes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 China. Electronic address:
The development of high-performance electrocatalysts for hydrogen evolution reaction (HER) in different pH conditionsis pivotal in producing green hydrogen, but remains challenging. Herein, we regulate the p-d orbitals hybridization between B and Pt for effective and durable HER at all pH ranges by controlling the inserted B atom. Consequently, the optimized B-doped Pt catalysts with 20 at.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!